Publications by authors named "Jose M W Duarte Neto"

Trichosporon yeasts are widely employed to produce lipids, lipases, and aspartic peptidases, but there are no previous studies on collagenase production. This work aimed to select the best collagenase producing Amazonian Trichosporon strains. Moreover, a 2-full factorial design (FFD) and a 2-central composite design combined with Response Surface Methodology were applied to optimize production and find the best conditions for hydrolysis of type I bovine collagen.

View Article and Find Full Text PDF

This study aimed to better characterize a recently purified stable extracellular alkaline peptidase produced by (URM 4622) through fluorescence spectroscopy, far-UV circular dichroism, kinetic and thermodynamic models to understand its' structure-activity and denaturation. Fluorescence data showed that changing pH leads to tryptophan residues exposure to more hydrophilic environments at optimum activity pH 9.0 and 10.

View Article and Find Full Text PDF

Bacillus thuringiensis (Bt) is one of the most promising biological control agents used commercially. Its products can contribute to reducing ecological and environmental problems associated with the use of chemical pesticides. Among the limiting factors of using Bt as bioinsecticide are the costs and ensuring its biological activity, which may vary according to the strain and culture conditions.

View Article and Find Full Text PDF

A new collagenase producing a strain of , isolated from the pollen of a bee of Amazon Region (Brazil), had its enzyme characterized and the production medium composition and culture conditions enhanced. A two-level design on three factors, namely initial medium pH, the substrate (gelatin) concentration and agitation intensity, allowed identifying the first two variables as the most significant ones, while a central composite design (CCD) was subsequently used to identify their optimal levels. Statistics highlighted maximized collagenolytic activity when substrate concentration and initial medium pH were selected at their highest levels (positive effects), whereas agitation intensity at the lowest (negative effect).

View Article and Find Full Text PDF

A new set of applications can be achieved when using high stability proteases. Industrially, high costs can be related to production medium and purification process. Magnetic nanoparticles have been successfully used for rapid and scalable purification.

View Article and Find Full Text PDF

This work reports an optimization of protease from Penicillium aurantiogriseum immobilization on polyaniline-coated magnetic nanoparticles for antioxidant peptides' obtainment derived from bovine casein. Immobilization process was optimized using a full two-level factorial design (2) followed by a response surface methodology. Using the derivative, casein was hydrolyzed uncovering its peptides that were sequenced and had antioxidant properties tested through (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) (ABTS) radical scavenging and hydrogen peroxide scavenging assays.

View Article and Find Full Text PDF