Publications by authors named "Jose M Villalgordo"

3-Amino-2H-azirines are potentially versatile building blocks in heterocyclic and peptide synthesis. Three new 3-amino-2H-azirines have been synthesized as racemates or mixtures of diastereoisomers in cases where another chiral residue is incorporated as the exocyclic amine. The crystal structures of two of them, an approximately 1:1 diastereoisomeric mixture of (2R)- and (2S)-2-ethyl-3-[(2S)-2-(1-methoxy-1,1-diphenylmethyl)pyrrolidin-1-yl]-2-methyl-2H-azirine, CHNO, 11, and 2-benzyl-3-(N-methyl-N-phenylamino)-2-phenyl-2H-azirine, CHN, 12, and the third as its diastereoisomeric trans-PdCl complex, trans-dichlorido[(2R)-2-ethyl-2-methyl-3-(X)-2H-azirine][(2S)-2-ethyl-2-methyl-3-(X)-2H-azirine]palladium(II), where X = N-{[(1S,2S,5S)-6,6-dimethylbicyclo[3.

View Article and Find Full Text PDF

Urolithins are gut microbiota metabolites produced in humans after consuming foods containing ellagitannins and ellagic acid. Three urolithin metabotypes have been reported for different individuals depending on the final urolithins produced. After absorption, they are conjugated with glucuronic acid (phase II metabolism), and these are the main circulating metabolites in plasma and reach different tissues.

View Article and Find Full Text PDF

A method to identify molecular scaffolds potentially active against the Mycobacterium tuberculosis complex (MTBC) is developed. A set of structurally heterogeneous agents against MTBC was used to obtain a mathematical model based on topological descriptors. This model was statistically validated through a Leave-n-Out test.

View Article and Find Full Text PDF

Urolithins (dibenzo-pyran-[,]-6 one derivatives) are human gut microbiota metabolites produced from the natural food antioxidant ellagic acid. Urolithins are better absorbed than ellagic acid and demonstrate biological activities that suggest that they are responsible for the health effects observed after consuming ellagitannin- and ellagic acid-containing foods. Urolithins occur in the systemic circulation as glucuronide conjugates following phase II metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • Acetylcholinesterase (AChE) inhibitors (AChEIs) are important for treating Alzheimer's disease by enhancing cognitive function.
  • A drug screening on over 11,000 compounds identified 108 potential AChEIs, with eight having similar structures to the known AChEI pyridostigmine.
  • Experimental tests revealed three promising new compounds (10b, 10h, and 10i) with strong AChE inhibition and high selectivity, with compound 10i showing AChE inhibition comparable to the FDA-approved drug galantamine but even better selectivity.
View Article and Find Full Text PDF

An unexpected 1,3-dioxa-[3,3]-sigmatropic rearrangement during the treatment of aryl- and alkenyl-substituted allylic alcohols with activated isocyanates is reported. The reorganization of bonds is highly dependent on the electron density of the aromatic ring and the nature of isocyanate used. This metal-free tandem reaction from branched allyl alcohols initiated by a carbamoylation reaction and followed by a sigmatropic rearrangement thus offers a new access to ( E)-cinnamyl and conjugated ( E, E)-diene carbamates, such as N-acyl and N-sulfonyl derivatives.

View Article and Find Full Text PDF

An efficient asymmetric synthesis of α-amino allylsilane derivatives is reported. The strategy is based on a [3,3]-allyl cyanate sigmatropic rearrangement from enantioenriched γ-hydroxy alkenylsilyl compounds. The isocyanate intermediate can be trapped by several nucleophiles, opening the way for the preparation of unknown chiral functionalized compounds such as the α-ureido allylsilanes as well as carbamate derivatives.

View Article and Find Full Text PDF

We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels (pLGIC) catalyze the selective transfer of ions across the cell membrane in response to a specific neurotransmitter. A variety of chemically diverse molecules, including the Alzheimer's drug memantine, block ion conduction at vertebrate pLGICs by plugging the channel pore. We show that memantine has similar potency in ELIC, a prokaryotic pLGIC, when it contains an F16'S pore mutation.

View Article and Find Full Text PDF

The 5-HT(3) receptor is a pentameric serotonin-gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti-emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5-HT(3) receptor. In the serotonin-bound structure, we observe hydrophilic interactions with loop E-binding site residues, which might enable transitions to channel opening.

View Article and Find Full Text PDF

A simple and straightforward methodology toward the synthesis of novel 2,6-disubstituted-4-alkoxypyrimidine derivatives of type 16 and 19 has been developed. This methodology, initially developed in solution, can be perfectly adapted to the solid support under analogous conditions, taking full advantage of automated parallel synthesis systems. This successful methodology benefits from the key role played by the thioether linkage placed at the 2-position in 3, 9, or 13 in a double manner: on one side, the steric effect exerted by the thioether linkage is likely to be responsible for the very high observed selectivity toward the formation of the O-alkylation products.

View Article and Find Full Text PDF