Background: Administration of allergen mixtures of many components comprises the most common approach for American allergists regarding the management of polyallergic patients. European allergists, however, are more reluctant to this type of treatment due to the potential drawbacks of mixing extracts.
Research Design And Methods: To assess the efficacy and safety of subcutaneous immunotherapy (SCIT) with polymerized allergen mixtures without dilutional effect in polyallergic patients.
Aim: To analyse the potential usefulness and clinical relevance of the assessment by echocardiography with left atrial strain, based on the myocardial atrial deformation curves with speckle-tracking velocity vector imaging (VVI), in the analysis of short-form recurrent atrial extra systoles in ambulatory patients not suffering from organic cardiopathy.
Methods: We designed a descriptive, prospective, and observational study including 270 patients between the ages of 18 and 75 assessed during an outpatient cardiology consultation attended due to palpitations over a period of two years. Using ambulatory electrocardiographic monitoring, we selected cases with short forms of repetitive atrial extrasystole, isolated or recurrentatrial fibrillation and a control group formed by those patients without repetitive ectopia.
Objective: To develop a theory of change of a program to promote physical activity in eleven health districts, in order to improve its design and plan its evaluation.
Method: Four focus groups were carried out, to develop a participatory theory of change, to identify the expected changes (long, medium and short term) of "La Ribera Camina" program, according to the following stakeholders: primary healthcare professionals, local government representatives and community members. A thematic analysis was used to identify the actions to be taken to achieve these changes, as well as the difficulties and facilitators to enhance the sustainability of the program.
J Phys Condens Matter
June 2021
The presence of sharp peaks in the real part of the static dielectric response function are usually accepted as indication of charge or spin instabilities in a material. However, there are misconceptions that Fermi surface (FS) nesting guarantees a peak in the response function like in one-dimensional systems, and, in addition, response function matrix elements between empty and occupied states are usually considered of secondary importance and typically set to unity like in the free electron gas case. In this work, we explicitly show, through model systems and real materials, within the framework of density functional theory, that predictions about the peaks in the response function, using FS nesting and constant matrix elements yields erroneous conclusions.
View Article and Find Full Text PDFFirst-principles electronic structure calculations are now accessible to a very large community of users across many disciplines, thanks to many successful software packages, some of which are described in this special issue. The traditional coding paradigm for such packages is monolithic, i.e.
View Article and Find Full Text PDFA review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta's flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements.
View Article and Find Full Text PDFWe present a simple view on band unfolding of the energy bands obtained from supercell calculations. It relies on the relationship between the local density of states in reciprocal space and the fully unfolded band structure. This provides an intuitive and valid approach not only for periodic, but also for systems with no translational symmetry.
View Article and Find Full Text PDFMolecular wires are essential components for future nanoscale electronics. However, the preparation of individual long conductive molecules is still a challenge. MMX metal-organic polymers are quasi-1D sequences of single halide atoms (X) bridging subunits with two metal ions (MM) connected by organic ligands.
View Article and Find Full Text PDFWe describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the "correct" parameterization of a given functional form, in the sense of Bayes theory.
View Article and Find Full Text PDFThe isothermal compressibility of water is essential to understand its anomalous properties. We compute it by ab initio molecular dynamics simulations of 200 molecules at five densities, using two different van der Waals density functionals. While both functionals predict compressibilities within ~30% of experiment, only one of them accurately reproduces, within the uncertainty of the simulation, the density dependence of the self-diffusion coefficient in the anomalous region.
View Article and Find Full Text PDFFinite-range numerical atomic orbitals are the basis functions of choice for several first principles methods, due to their flexibility and scalability. Generating and testing such basis sets, however, remains a significant challenge for the end user. We discuss these issues and present a new scheme for generating improved polarization orbitals of finite range.
View Article and Find Full Text PDFIn this work we have synthetized and characterized by X-ray diffraction five cobalt complexes with 6-thioguanine (6-ThioGH), 6-thioguanosine (6-ThioGuoH), or 2'-deoxy-6-thioguanosine (2'-d-6-ThioGuoH) ligands. In all cases, these ligands coordinate to cobalt via N7 and S6 forming a chelate ring. However, independently of reagents ratio, 6-ThioGH provided monodimensional cobalt(II) coordination polymers, in which the 6-ThioG(-) acts as bridging ligand.
View Article and Find Full Text PDFOne-dimensional conductive polymers are attractive materials because of their potential in flexible and transparent electronics. Despite years of research, on the macro- and nano-scale, structural disorder represents the major hurdle in achieving high conductivities. Here we report measurements of highly ordered metal-organic nanoribbons, whose intrinsic (defect-free) conductivity is found to be 10(4) S m(-1), three orders of magnitude higher than that of our macroscopic crystals.
View Article and Find Full Text PDFBackground: Adherence to interferon β-1b (INFβ-1b) therapy is essential to maximize the beneficial effects of treatment in multiple sclerosis (MS). For that reason, the main objectives of this study are to assess adherence to INFβ-1b in patients suffering from MS in Spain, and to identify the factors responsible for adherence in routine clinical practice.
Methodology/principal Findings: This was an observational, retrospective, cross-sectional study including 120 Spanish patients with MS under INFβ-1b treatment.
The role of dispersion or van de Waals (VDW) interactions in imidazolium-based room-temperature ionic liquids is studied within the framework of density functional theory, using a recently developed non-empirical functional [M. Dion, H. Rydberg, E.
View Article and Find Full Text PDFIt is known that ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions, based on the generalized gradient approximation (GGA) to density functional theory (DFT), with commonly used functionals fail to produce structural and diffusive properties in reasonable agreement with experiment. This is true for canonical, constant temperature simulations where the density of the liquid is fixed to the experimental density. The equilibrium density, at ambient conditions, of DFT water has recently been shown by Schmidt et al.
View Article and Find Full Text PDFWe present a study of the adsorption and diffusion of CH₄, CO₂, and H₂ molecules in clathrate hydrates using ab initio van der Waals density functional formalism [M. Dion, Phys. Rev.
View Article and Find Full Text PDFCarbon nitride materials have extraordinary potential in various applications, including catalysts, filled-particles, and superhard materials. Carbon nitride nanoclusters have been prepared under mild solvothermal conditions by a reaction between 1,3,5-trichlotriazine and sodium azide in toluene. The bulk material formed has a C(3)N(4) composition and consists of spheres with diameters ranging from approximately 1 nm to 4 mum.
View Article and Find Full Text PDFMolecular hydrogen adsorption in a nanoporous metal-organic framework structure (MOF-74) is studied via van der Waals density-functional calculations. The primary and secondary binding sites for H(2) are confirmed. The low-lying rotational and translational energy levels are calculated, based on the orientation and position dependent potential energy surface at the two binding sites.
View Article and Find Full Text PDFWe present an efficient implementation of the van der Waals density functional of Dion et al. [Phys. Rev.
View Article and Find Full Text PDFWe present first-principles molecular dynamics simulations of the formation of monatomic gold nanowires with different impurities (H, C, O, S). Special care was taken not to bias the probability that the impurity atoms participate in the monatomic wire, which is the main focus of this work. Hydrogen always evaporated before the formation of the monatomic chains.
View Article and Find Full Text PDFThe electronic structure of periodic quadruple helix guanine wires, which mimic G4-DNA molecules, was studied as a function of the stacking distance between consecutive planes, by means of first principles density functional theory calculations. We show that, whereas for the native DNA interplane separation of 3.4 A the HOMO- and LUMO-derived bands are poorly dispersive, the bandwidths can be significantly increased when compressive strain is applied along the helical axis.
View Article and Find Full Text PDFWe present a very efficient and accurate method to simulate scanning tunneling microscopy images and spectra from first-principles density functional calculations. The wave functions of the tip and sample are calculated separately on the same footing and propagated far from the surface using the vacuum Green function. This allows us to express the Bardeen matrix elements in terms of convolutions and to obtain the tunneling current at all tip positions and bias voltages in a single calculation.
View Article and Find Full Text PDF