Publications by authors named "Jose M Serrano-Morales"

Previous observations made in human and mouse colons suggest that reelin protects the colon from pathology. In this study, we evaluated reelin expression during the transition from either colitis or precancerous lesions to colon cancer and tried to elucidate reelin regulation under these transition processes. Samples of healthy and pathological colons from humans and mice treated with either azoxymethane/dextran sulfate sodium (DSS) or azoxymethane alone were used.

View Article and Find Full Text PDF

We previously reported that reelin, an extracellular matrix protein first known for its key role in neuronal migration, reduces the susceptibility to dextran sulphate sodium (DSS)-colitis. The aim of the current study was to determine whether reelin protects from colorectal cancer and how reelin defends from colon pathology. In the colon of wild-type and of mice lacking reelin (reeler mice) we have analysed the: i) epithelium cell renewal processes, ii) morphology, iii) Sox9, Cdx2, Smad5, Cyclin D1, IL-6 and IFNγ mRNA abundance in DSS-treated and untreated mice, and iv) development of azoxymethane/DSS-induced colorectal cancer, using histological and real time-PCR methodologies.

View Article and Find Full Text PDF

The expression of the phosphoinositides phosphatases Synaptojanins (Synjs) 1 and 2 has been shown in brain and in some peripheral tissues, but their expression in the intestine has not been reported. Herein we show that the small and large intestine express Synj1 and Synj2. Their mRNA levels, measured by RT-PCR, are not affected by development in the small intestine but in the colon they increase with age.

View Article and Find Full Text PDF

Reelin is an extracellular matrix protein that plays a critical role in neuronal migration. Here we show that the mucosa of human colon expresses reelin, its receptors ApoER2 and VLDLR, and its effector protein Dab1. Immunohistochemical analyses reveal that reelin expression is restricted to pericryptal myofibroblasts; Dab1 is detected at myofibroblasts, the apical domain of surface epithelial and crypt cells, and a strong linear staining is observed at the basement membrane; VLDLR and ApoER2 are in the cytoplasm of surface epithelium and myofibroblasts, and VLDLR is also detected in the cytoplasm of the crypt cells.

View Article and Find Full Text PDF