The mechanism of the O and HO reaction (Haber-Weiss) under solvent-free conditions has been characterized at the DFT and CCSD(T) level of theory to account for the ease of this reaction in the gas phase and the formation of two different set of products (Blanksby et al., . , , 4948).
View Article and Find Full Text PDFA recent report has shown that siloxides can undergo an unusual Me/F exchange reaction promoted by NF3 in the gas phase ( Angew. Chem. Int.
View Article and Find Full Text PDFA number of model Diels-Alder (D-A) cycloaddition reactions (H2C=CH2 + cyclopentadiene and H2C=CHX + 1,3-butadiene, with X = H, F, CH3, OH, CN, NH2, and NO) were studied by static (transition state - TS and IRC) and dynamics (quasiclassical trajectories) approaches to establish the (a)synchronous character of the concerted mechanism. The use of static criteria, such as the asymmetry of the TS geometry, for classifying and quantifying the (a)synchronicity of the concerted D-A reaction mechanism is shown to be severely limited and to provide contradictory results and conclusions when compared to the dynamics approach. The time elapsed between the events is shown to be a more reliable and unbiased criterion and all the studied D-A reactions, except for the case of H2C=CHNO, are classified as synchronous, despite the gradual and quite distinct degrees of (a)symmetry of the TS structures.
View Article and Find Full Text PDFThe gas-phase dehydration-rearrangement (DR) reactions of protonated alcohols [Me2 (R)CCH(OH2 )Me](+) [R=Me (ME), Et (ET), and iPr (I-PR)] were studied by using static approaches (intrinsic reaction coordinate (IRC), Rice-Ramsperger-Kassel-Marcus theory) and dynamics (quasiclassical trajectory) simulations at the B3LYP/6-31G(d) level of theory. The concerted mechanism involves simultaneous water dissociation and alkyl migration, whereas in the stepwise reaction pathway the dehydration step leads to a secondary carbocation intermediate followed by alkyl migration. Internal rotation (IR) can change the relative position of the migrating alkyl group and the leaving group (water), so distinct products may be obtained: [Me(R)CCH(Me)Me⋅⋅⋅OH2 ](+) and [Me(Me)CCH(R)Me⋅⋅⋅OH2 ](+) .
View Article and Find Full Text PDFGas-phase reactions of model carbosulfonium ions (CH(3)-S(+)=CH(2;) CH(3)CH(2)-S(+)=CH(2) and Ph-S(+)=CH(2)) and an O-analogue carboxonium ion (CH(3)-O(+)=CH(2)) with acyclic (isoprene, 1,3-butadiene, methyl vinyl ketone) and cyclic (1,3-cyclohexadiene, thiophene, furan) conjugated dienes were systematically investigated by pentaquadrupole mass spectrometry. As corroborated by B3LYP/6-311 G(d,p) calculations, the carbosulfonium ions first react at large extents with the dienes forming adducts via simple addition. The nascent adducts, depending on their stability and internal energy, react further via two competitive channels: (1) in reactions with acyclic dienes via cyclization that yields formally [4+2(+)] cycloadducts, or (2) in reactions with the cyclic dienes via dissociation by HSR loss that yields methylenation (net CH(+) transfer) products.
View Article and Find Full Text PDFWell-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH(-) + CH(3)ONO(2) reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (S(N)2@C) or the nitrogen center (S(N)2@N) as well as a proton abstraction followed by dissociation (E(CO)2) pathway. Direct dynamics simulations yield an S(N)2:E(CO)2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO(2) group that scatters the incoming OH(-).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2012
Exchange Me for a fluorine: Trimethylsiloxide ions in the presence of NF(3) in the gas phase undergo an unusual and sequential metathesis-type reaction wherein methyl groups are exchanged for fluorine. Theoretical calculations suggest that the reaction proceeds by a three-step internal-nucleophilic-displacement mechanism which features a pentacoordinated siliconate species as a transition state rather than as an intermediate.
View Article and Find Full Text PDFJ Phys Chem A
November 2010
There has been increasing interest in the gas-phase reactivity of alkyl nitrates because of their well-known applications as explosives and because of their role in atmospheric and in marine processes. This manuscript describes an experimental study by FT-ICR techniques of the gas-phase reactions of OH(-) and F(-) with methyl and ethyl nitrate. For methyl nitrate, the main reaction channel is found to be an elimination process promoted by abstraction of an α proton from the methyl group.
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
August 2010
Tetra-alkoxysilanes are common and useful reagents in sol-gel processes and understanding their reactivity is important in the design of new materials. The mechanism of gas-phase reactions that mimic alcoholyis of Si(OMe)(4) (usually known as TMOS) under acidic conditions have been studied by Fourier transform ion cyclotron resonance techniques and density functional calculations at the B3LYP/6-311+G(d,p) level. The proton affinity of TMOS has been estimated at 836.
View Article and Find Full Text PDFThe gas-phase methylenation reaction between CH(3)S(+)=CH(2) and alkylbenzenes, aniline, phenol and alkyl phenyl ethers, which yields [M + CH](+) and CH(3)SH, has been studied by Fourier transform ion cyclotron resonance (FT-ICR) techniques and computational chemistry at the DFT level. The methylthiomethyl cation is less reactive than methoxymethyl and, unlike the latter, is unreactive toward benzene. The calculations suggest that reaction with toluene should proceed primarily by addition at the para and ortho positions resulting in a benzyl-type ion.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2005
The intestinal plasticity of digestive enzymes of amphibian species is poorly known. The goal of this study was to characterize digestive enzyme profiles along the small intestine of adult frogs, Xenopus laevis, in response to an experimental diet. We acclimated adult X.
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
March 2004
Gas-phase [C, H(3), S](+) ions obtained by electron impact from (CH(3))(2)S at 14 eV undergo two distinct low-pressure ion-molecule reactions with the parent neutral: proton transfer and charge exchange. The kinetics of these reactions studied by Fourier transform ion cyclotron resonance (FT-ICR) techniques clearly suggests the [C, H(3), S](+) species to be a mixture of isomeric ions. While proton transfer is consistent with reagent ions displaying the CH(2)SH(+) connectivity, the observed charge exchange strongly argues for the presence of thiomethoxy cations, CH(3)S(+), predicted to be stable only in the triplet state.
View Article and Find Full Text PDFThe free-energy profile for the different reaction pathways available to the hydroxide ion and methyl formate in aqueous solution is reported for the first time. The theoretical analysis was carried out by using the cluster-continuum method recently proposed by us for calculating the free energy of solvation of ions. Unlike the gas-phase reaction, our results are consistent with the fact that the reaction occurs mainly by nucleophilic attack of the hydroxide on the carbonyl carbon to yield a tetrahedral intermediate (B(AC)2 mechanism).
View Article and Find Full Text PDF