The development of new interatomic potentials to model metallic systems is a difficult task, due in part to the dependence between the parameters that describe the electron density and the short-range interactions. Parameter search methods are prone to false convergence. To solve this problem, we have developed a methodology for obtaining the electron density parameters independently of the short-range interactions, so that physically sound parameters can be obtained to describe the electron density, after which the short-range parameters can be fitted, thus reducing the complexity of the process and yielding better interatomic potentials.
View Article and Find Full Text PDFAmong many other applications, room-temperature ionic liquids (ILs) are used as electrolytes for storage and energy-conversion devices. In this work, we investigate, at the microscopic level, the structural and dynamical properties of 1-methyl-1-butyl-pyrrolidinium bis(trifluoromethanesulfonyl) imide [C PYR] [Tf N] IL-based electrolytes for metal-ion batteries. We carried out molecular dynamics simulations of electrolytes mainly composed of [C PYR] [Tf N] IL with the addition of M -[Tf N] metal salts (M=Li , Na , Ni , Zn , Co , Cd , and Al , n=1, 2, and 3) dissolved in the IL.
View Article and Find Full Text PDFCompositional effects on the charge-transport properties of electrolytes for batteries based on room-temperature ionic liquids (RTILs) are well-known. However, further understanding is required about the molecular origins of these effects, in particular regarding the replacement of Li by Na. In this work, we investigate the use of RTILs in batteries, by means of both classical molecular dynamics (MD), which provides information about structure and molecular transport, and ab initio molecular dynamics (AIMD), which provides information about structure.
View Article and Find Full Text PDFThe thermostructural properties of Ni-Cr materials, as bulk and nanoparticle (NP) systems, have been predicted with a newly developed interatomic potential, for Ni/Cr ratios from 100/0 to 60/40. The potential, which has been fitted using experimental data and further validated using Density Functional Theory (DFT), describes correctly the variation with temperature of lattice parameters and the coefficient of thermal expansion, from 100 K to 1000 K. Using this potential, we have performed Molecular Dynamics (MD) simulations on bulk Ni-Cr alloys of various compositions, for which no experimental data are available.
View Article and Find Full Text PDF