Cardiovascular diseases (CVD) are a group of disorders that affect the heart and blood vessels. They include conditions such as myocardial infarction, coronary artery disease, heart failure, arrhythmia, and congenital heart defects. CVDs are the leading cause of death worldwide.
View Article and Find Full Text PDFHeart failure with preserved ejection fraction (HFpEF) represents a global health challenge, with limited therapies proven to enhance patient outcomes. This makes the elucidation of disease mechanisms and the identification of novel potential therapeutic targets a priority. Here, we performed RNA sequencing on ventricular myocardial biopsies from patients with HFpEF, prospecting to discover distinctive transcriptomic signatures.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
May 2023
Background: Dand5 encodes a protein that acts as an antagonist to Nodal/TGF-β and Wnt pathways. A mouse knockout (KO) model has shown that this molecule is associated with left-right asymmetry and cardiac development, with its depletion causing heterotaxia and cardiac hyperplasia.
Objective: This study aimed to investigate the molecular mechanisms affected by the depletion of Dand5.
(1) Background: The contribution of gene-specific variants for congenital heart disease, one of the most common congenital disabilities, is still far from our complete understanding. Here, we applied a disease model using human-induced pluripotent stem cells (hiPSCs) to evaluate the function of DAND5 on human cardiomyocyte (CM) differentiation and proliferation. (2) Methods: Taking advantage of our patient-derived iPSC line, we used CRISPR-Cas9 gene-editing to generate a set of isogenic hiPSCs (-corrected and full-mutant).
View Article and Find Full Text PDFCold Spring Harb Mol Case Stud
December 2022
The majority of heterotaxy cases do not obtain a molecular diagnosis, although pathogenic variants in more than 50 genes are known to cause heterotaxy. A heterozygous missense variant in , a nodal inhibitor, which functions in early development for establishment of right-left patterning, has been implicated in heterotaxy. Recently, the first case was reported of a biallelic loss-of-function (LoF) variant in an individual with heterotaxy.
View Article and Find Full Text PDFThe epicardium is a single cell layer of mesothelial cells that plays a critical role during heart development contributing to different cardiac cell types of the developing heart through epithelial-to-mesenchymal transition (EMT). Moreover, the epicardium is a source of secreted growth factors that promote myocardial growth. CCBE1 is a secreted extracellular matrix protein expressed by epicardial cells that is required for the formation of the primitive coronary plexus.
View Article and Find Full Text PDFThe collagen- and calcium-binding EGF-like domains 1 (CCBE1) is a secreted protein extensively described as indispensable for lymphangiogenesis during development enhancing VEGF-C signaling. In human patients, mutations in have been found to cause Hennekam syndrome, an inherited disease characterized by malformation of the lymphatic system that presents a wide variety of symptoms such as primary lymphedema, lymphangiectasia, and heart defects. Importantly, over the last decade, an essential role for CCBE1 during heart development is being uncovered.
View Article and Find Full Text PDFDeciphering the clues of a regenerative mechanism for the mammalian adult heart would save millions of lives in the near future. Heart failure due to cardiomyocyte loss is still one of the significant health burdens worldwide. Here, we show the potential of a single molecule, DAND5, in mouse pluripotent stem cell-derived cardiomyocytes specification and proliferation.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (hiPSCs) from individual patient basis are considered a powerful resource to model human diseases. However, to study complex multigenic diseases such as Congenital Heart Disease, it is crucial to generate perfect isogenic controls to understand gene singularity and contribution. Here, we report the engendering of an isogenic hiPSC line with homozygous correction of c.
View Article and Find Full Text PDFUnderstanding the molecular pathways regulating cardiogenesis is crucial for the early diagnosis of heart diseases and improvement of cardiovascular disease. During normal mammalian cardiac development, collagen and calcium-binding EGF domain-1 (Ccbe1) is expressed in the first and second heart field progenitors as well as in the proepicardium, but its role in early cardiac commitment remains unknown. Here we demonstrate that during mouse embryonic stem cell (ESC) differentiation Ccbe1 is upregulated upon emergence of Isl1- and Nkx2.
View Article and Find Full Text PDFBackground: Proper coronary vasculature development is essential for late-embryonic and adult heart function. The developmental regulation of coronary embryogenesis is complex and includes the coordinated activity of multiple signaling pathways. CCBE1 plays an important role during lymphangiogenesis, enhancing VEGF-C signaling, which is also required for coronary vasculature formation.
View Article and Find Full Text PDFCollagen and calcium-binding EGF domain-1 (CCBE1) is a secreted protein critical for lymphatic/cardiac vascular development and regeneration. However, the low efficient production of the recombinant full-length CCBE1 (rCCBE1) has been a setback for functional studies and therapeutic applications using this protein. The main goal of this work was to implement a robust bioprocess for efficient production of glycosylated rCCBE1.
View Article and Find Full Text PDFA DAND5-control human iPSC line was generated from the urinary cells of a phenotypically normal donor. Exfoliated renal epithelial (RE) cells were collected and reprogrammed into iPSCs using Sendai virus reprogramming system. The pluripotency, in vitro differentiation potential, karyotype stability, and the transgene-free status of generated iPSC line were analyzed and confirmed.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
December 2017
The formation of the asymmetric left-right (LR) body axis is one of the fundamental aspects of vertebrate embryonic development, and one still raising passionate discussions among scientists. Although the conserved role of nodal is unquestionable in this process, several of the details around this signaling cascade are still unanswered. To further understand this mechanism, we have been studying Cerberus-like 2 (Cerl2), an inhibitor of Nodal, and its role in the generation of asymmetries in the early vertebrate embryo.
View Article and Find Full Text PDFA human iPSC line was generated from exfoliated renal epithelial (ERE) cells of a patient affected with Congenital Heart Disease (CHD) and Laterality Defects carrying tshe variant p.R152H in the DAND5 gene. The transgene-free iPSCs were generated with the human OSKM transcription factor using the Sendai-virus reprogramming system.
View Article and Find Full Text PDFBackground: Perturbations on the Left-Right axis establishment lead to laterality defects, with frequently associated Congenital Heart Diseases (CHDs). Indeed, in the last decade, it has been reported that the etiology of isolated cases of CHDs or cases of laterality defects with associated CHDs is linked with variants of genes involved in the Nodal signaling pathway.
Methods: With this in mind, we analyzed a cohort of 38 unrelated patients with Congenital Heart Defects that can arise from initial perturbations in the formation of the Left-Right axis and 40 unrelated ethnically matched healthy individuals as a control population.
Protein Kinase Domain Containing, Cytoplasmic (PKDCC) is a protein kinase which has been implicated in longitudinal bone growth through regulation of chondrocytes formation. Nevertheless, the mechanism by which this occurs remains unknown. Here, we identified two new members of the PKDCC family, Pkdcc1 and Pkdcc2 from Xenopus laevis.
View Article and Find Full Text PDFDuring the course of a differential screen to identify transcripts specific for chick heart/hemangioblast precursor cells, we have identified Ccbe1 (Collagen and calcium-binding EGF-like domain 1). While the importance of Ccbe1 for the development of the lymphatic system is now well demonstrated, its role in cardiac formation remained unknown. Here we show by whole-mount in situ hybridization analysis that cCcbe1 mRNA is initially detected in early cardiac progenitors of the two bilateral cardiogenic fields (HH4), and at later stages on the second heart field (HH9-18).
View Article and Find Full Text PDFWe report the expression pattern of a novel Xenopus laevis gene, zcchc24, which encodes a protein containing two zinc finger domains from the zf-CCHC and zf-3CxxC superfamilies. This protein shares >84% amino acid identity with its vertebrate homologues. During X.
View Article and Find Full Text PDFThe determination of left-right body asymmetry in mouse embryos depends on the interplay of molecules in a highly sensitive structure, the node. Here, we show that the localization of Cerl2 protein does not correlate to its mRNA expression pattern, from 3-somite stage onwards. Instead, Cerl2 protein displays a nodal flow-dependent dynamic behavior that controls the activity of Nodal in the node, and the transmission of the laterality information to the left lateral plate mesoderm (LPM).
View Article and Find Full Text PDFEndo-1,5-α-L-arabinanases are glycosyl hydrolases that are able to cleave the glycosidic bonds of α-1,5-L-arabinan, releasing arabino-oligosaccharides and L-arabinose. Two extracellular endo-1,5-α-L-arabinanases have been isolated from Bacillus subtilis, BsArb43A and BsArb43B (formally named AbnA and Abn2, respectively). BsArb43B shows low sequence identity with previously characterized 1,5-α-L-arabinanases and is a much larger enzyme.
View Article and Find Full Text PDFBacillus subtilis produces alpha-l-arabinofuranosidases (EC 3.2.1.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
July 2008
Two Bacillus subtilis extracellular endo-1,5-alpha-L-arabinanases, AbnA and Abn2, belonging to glycoside hydrolase family 43 have been identified. The recently characterized Abn2 protein hydrolyzes arabinan and has low identity to other reported 1,5-alpha-L-arabinanases. Abn2 and its selenomethionine (SeMet) derivative have been purified and crystallized.
View Article and Find Full Text PDFThe extracellular depolymerization of arabinopolysaccharides by microorganisms is accomplished by arabinanases, xylanases, and galactanases. Here, we characterize a novel endo-alpha-1,5-l-arabinanase (EC 3.2.
View Article and Find Full Text PDFIn Bacillus subtilis, the synthesis of enzymes involved in the degradation of arabinose-containing polysaccharides is subject to carbon catabolite repression (CCR). Here we show that CcpA is the major regulator of repression of the arabinases genes in the presence of glucose. CcpA acts via binding to one cre each in the promoter regions of the abnA and xsa genes and to two cres in the araABDLMNPQ-abfA operon.
View Article and Find Full Text PDF