Purpose Of The Study: Alveolar-capillary leakage of proteinaceous fluid impairs alveolar ventilation and surfactant function and decreases lung compliance in acute lung injury. We investigated the correlation between lung function and total protein levels in bronchoalveolar lavage fluid (BALF) of ventilated, lavaged surfactant-deficient rabbits treated with various clinical and synthetic lung surfactant preparations.
Materials And Methods: 109 ventilated, young adult New Zealand White rabbits underwent lung lavage to induce surfactant-deficiency (PaO2 <100 torr in 100% O2), were treated with a clinical surfactant or a synthetic surfactant preparation with surfactant protein B (SP-B) and/or surfactant protein C (SP-C) analogs, and mechanically ventilated for 120 min.
Background. Surfactant protein C (SP-C; 35 residues) in lungs has a cationic N-terminal domain with two cysteines covalently linked to palmitoyls and a C-terminal region enriched in Val, Leu and Ile. Native SP-C shows high surface activity, due to SP-C inserting in the bilayer with its cationic N-terminus binding to the polar headgroup and its hydrophobic C-terminus embedded as a tilted, transmembrane α-helix.
View Article and Find Full Text PDFBackground. Nasal continuous positive airway pressure (nCPAP) is a widely accepted technique of non-invasive respiratory support in premature infants with respiratory distress syndrome due to lack of lung surfactant. If this approach fails, the next step is often intubation, mechanical ventilation (MV) and intratracheal instillation of clinical lung surfactant.
View Article and Find Full Text PDFBackground. Chemical spills are on the rise and inhalation of toxic chemicals may induce chemical acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Although the pathophysiology of ALI/ARDS is well understood, the absence of specific antidotes has limited the effectiveness of therapeutic interventions.
View Article and Find Full Text PDFBackground: Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
March 2010
Lung surfactant protein B (SP-B) is required for proper surface activity of pulmonary surfactant. In model lung surfactant lipid systems composed of saturated and unsaturated lipids, the unsaturated lipids are removed from the film at high compression. It is thought that SP-B helps anchor these lipids closely to the monolayer in three-dimensional cylindrical structures termed "nanosilos" seen by atomic force microscopy imaging of deposited monolayers at high surface pressures.
View Article and Find Full Text PDFBackground: This study examines the surface activity and resistance to phospholipase degradation of a fully-synthetic lung surfactant containing a novel diether phosphonolipid (DEPN-8) plus a 34 amino acid peptide (Mini-B) related to native surfactant protein (SP)-B. Activity studies used adsorption, pulsating bubble, and captive bubble methods to assess a range of surface behaviors, supplemented by molecular studies using Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD), and plasmon resonance. Calf lung surfactant extract (CLSE) was used as a positive control.
View Article and Find Full Text PDFSurfactant protein B (SP-B) is an essential component of pulmonary surfactant. Synthetic dimeric SP-B(1-25) (SP-B(1-25)), a peptide based on the N-terminal domain of human SP-B, efficiently mimics the functional properties of SP-B. The authors investigated the optimum lipid composition for SP-B(1-25) by comparing the effects of natural lung lavage lipids (NLL), a synthetic equivalent of NLL (synthetic lavage lipids SLL), and a standard lipid mixture (TL) on the activities of SP-B(1-25).
View Article and Find Full Text PDFSurfactant protein B (SP-B) is a constituent surfactant protein critical for normal lung function. Monomeric SP-B(1-25) (mSP-B(1-25)), a peptide based on the N-terminal domain of human SP-B, mixed in phospholipids partially restores lung function in surfactant-deficient animals. Because native SP-B is a homodimer, we synthesized and tested dimeric SP-B(1-25) (dSP-B(1-25)).
View Article and Find Full Text PDFThe use of mammalian lung surfactant extracts has sharply reduced mortality and morbidity from respiratory distress syndrome in premature infants. Synthesis of surfactant protein B and C (SP-B and SP-C) analogues may lead the way to a synthetic surfactant preparation. Dimeric SP-B(1-25) (dSP-B(1-25)) is based on the N-terminal domain of human SP-B and SP-Cfc is a modified human SP-C in which a single phenylalanine is substituted for a palmitoylated cysteine residue in the N-terminal segment (Phe-4 > Cys-4 variant).
View Article and Find Full Text PDF