Publications by authors named "Jose M Gomez-Rodriguez"

Being able to access the rich atomic-scale phenomenology, which occurs during the reactions pathways, is a pressing need toward the pursued knowledge-based design of more efficient nanocatalysts, precisely tailored atom by atom for each reaction. However, to reach this goal of achieving maximum optimization, it is mandatory, first, to address how exposure to the experimental conditions, which will be needed to activate the processes, affects the internal configuration of the nanoparticles at the atomic level. In particular, the most critical experimental parameter is probably the temperature, which among other unwanted effects can induce nanocatalyst aggregation.

View Article and Find Full Text PDF

Artificial nanostructuring of graphene has served as a platform to induce variations in its structural and electronic properties, fostering the experimental observation of a wide and fascinating phenomenology. Here, we present an approach to graphene tuning, based on Rh(110) surface reconstruction induced by oxygen atoms intercalation. The resulting nanostructured graphene has been characterized by scanning tunneling microscopy (STM) complemented by low-energy electron microscopy (LEEM), micro low-energy electron diffraction (μ-LEED), micro angle-resolved photoemission spectroscopy (μ-ARPES), and micro X-ray photoelectron spectroscopy (μ-XPS) measurements under ultrahigh vacuum (UHV) conditions at room temperature (RT).

View Article and Find Full Text PDF

The on-surface formation of iso-oriented 1D molecular architectures, with high structural perfection, on 2D materials has been a long-sought objective. However, such realization has been troublesome and limited, and it still remains an experimental challenge. Here, the quasi-1D stripe-like moiré pattern, arising at the interface of graphene grown on Rh(110), has been used to guide the formation of 1D molecular wires of π-conjugated, non-planar, chloro-aluminum phthalocyanine (ClAlPc) molecules, brought together by van der Waals interactions.

View Article and Find Full Text PDF

In-plane heterostructures of graphene and hexagonal boron nitride (h-BN) exhibit exceptional properties, which are highly sensitive to the structure of the alternating domains. Nevertheless, achieving accurate control over their structural properties, while keeping a high perfection at the graphene-h-BN boundaries, still remains a challenge. Here, the growth of lateral heterostructures of graphene and h-BN on Rh(110) surfaces is reported.

View Article and Find Full Text PDF

When magnetic atoms are inserted inside a superconductor, the superconducting order is locally depleted as a result of the antagonistic nature of magnetism and superconductivity. Thereby, distinctive spectral features, known as Yu-Shiba-Rusinov states, appear inside the superconducting gap. The search for Yu-Shiba-Rusinov states in different materials is intense, as they can be used as building blocks to promote Majorana modes suitable for topological quantum computing.

View Article and Find Full Text PDF

A deep grasp of the properties of the interface between organic molecules and hexagonal boron nitride (h-BN) is essential for the full implementation of these two building blocks in the next generation of electronic devices. Here, using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we report on the geometric and electronic features of C evaporated on a single layer of h-BN grown on a Rh(110) surface under ultra-high vacuum. Two different molecular assemblies of C on the h-BN/Rh(110) surface were observed.

View Article and Find Full Text PDF

Quantum confinement of graphene Dirac-like electrons in artificially crafted nanometer structures is a long sought goal that would provide a strategy to selectively tune the electronic properties of graphene, including bandgap opening or quantization of energy levels. However, creating confining structures with nanometer precision in shape, size, and location remains an experimental challenge, both for top-down and bottom-up approaches. Moreover, Klein tunneling, offering an escape route to graphene electrons, limits the efficiency of electrostatic confinement.

View Article and Find Full Text PDF

A 2D material consisting of a pseudo-ordered distribution of Ir nanocrystals supported on a h-BN/Rh(111) surface is presented here. The particular spatial distribution of the Ir nanoparticles is achieved thanks to the existence of a large variety of adsorption positions within the pores of the h-BN/Rh(111) nanomesh template with hexagonal symmetry. The resulting deviations of nanoparticle positions with respect to a perfect hexagonal lattice, which make this material of special interest in the field of optics, can be tuned by the temperature and the amount of Ir.

View Article and Find Full Text PDF

Graphene is commonly regarded as an inert material. However, it is well known that the presence of defects or substitutional hetero-atoms confers graphene promising catalytic properties. In this work, we use first-principles calculations to show that it is also possible to enhance the chemical reactivity of a graphene layer by simply growing it on an appropriate substrate.

View Article and Find Full Text PDF

The atomistic mechanisms involved in the oxygen (O) intercalation in the strongly interacting graphene (G) on Rh(111) system are characterized in a comprehensive experimental and theoretical study, combining scanning tunneling microscopy and density functional theory (DFT) calculations. Experimental evidence points out that the G areas located just above the metallic steps of the substrate are the active sites for initializing the intercalation process when some micro-etching points appear after molecular oxygen gas exposure. These regions are responsible for both the dissociation of the oxygen molecules and the subsequent penetration to the G-metal interface.

View Article and Find Full Text PDF

Nitrogen doping of graphene can be an efficient way of tuning its pristine electronic properties. Several techniques have been used to introduce nitrogen atoms on graphene layers. The main problem in most of them is the formation of a variety of C-N species that produce different electronic and structural changes on the 2D layer.

View Article and Find Full Text PDF

Carbon and silicon pentagonal low-dimensional structures attract a great interest as they may lead to new exotic phenomena such as topologically protected phases or increased spin-orbit effects. However, no pure pentagonal phase has yet been realized for any of them. Here we unveil through extensive density functional theory calculations and scanning tunnelling microscope simulations, confronted to key experimental facts, the hidden pentagonal nature of single- and double-strand chiral Si nano-ribbons perfectly aligned on Ag(110) surfaces whose structure has remained elusive for over a decade.

View Article and Find Full Text PDF

The local interaction between graphene and a host substrate strongly determines the actual properties of the graphene layer. Here we show that scanning tunneling microscopy (STM) can selectively help to visualize either the graphene layer or the substrate underneath, or even both at the same time, providing a comprehensive picture of this coupling with atomic precision and high energy resolution. We demonstrate this for graphene on Cu(111).

View Article and Find Full Text PDF

Isolated hydrogen atoms absorbed on graphene are predicted to induce magnetic moments. Here we demonstrate that the adsorption of a single hydrogen atom on graphene induces a magnetic moment characterized by a ~20-millielectron volt spin-split state at the Fermi energy. Our scanning tunneling microscopy (STM) experiments, complemented by first-principles calculations, show that such a spin-polarized state is essentially localized on the carbon sublattice opposite to the one where the hydrogen atom is chemisorbed.

View Article and Find Full Text PDF

Unlabelled: Scanning probe microscopy (SPM) is already a relevant tool in biological research at the nanoscale. We present 'Flatten plus', a recent and helpful implementation in the well-known WSxM free software package. 'Flatten plus' allows reducing low-frequency noise in SPM images in a semi-automated way preventing the appearance of typical artifacts associated with such filters.

View Article and Find Full Text PDF

The reaction between 1,3,5-tris(4-hydroxyphenyl)benzene and benzene-1,3,5-tricarbonyl trichloride leads to polyester condensation and formation of a novel COF on an Au(111) surface. The characterization performed in situ by means of variable temperature STM and XPS reveals the formation of an array of hexagonal cavities with ca. 2 nm size.

View Article and Find Full Text PDF

A novel technique for growing graphene on relatively inert metals, consisting in the thermal decomposition of low energy ethylene ions irradiated on hot metal surfaces in ultrahigh vacuum, is reported. By this route, we have grown graphene monolayers on Cu(111) and, for the first time, on Au(111) surfaces. For both noble metal substrates, but particularly for Au(111), our scanning tunneling microscopy and spectroscopy measurements provide sound evidence of a very weak graphene-metal interaction.

View Article and Find Full Text PDF

We present a very efficient and accurate method to simulate scanning tunneling microscopy images and spectra from first-principles density functional calculations. The wave functions of the tip and sample are calculated separately on the same footing and propagated far from the surface using the vacuum Green function. This allows us to express the Bardeen matrix elements in terms of convolutions and to obtain the tunneling current at all tip positions and bias voltages in a single calculation.

View Article and Find Full Text PDF