The Hedgehog (Hh) signaling pathway regulates normal development and cell proliferation in metazoan organisms, but its aberrant activation can promote tumorigenesis. Hh-induced tumors arise from various tissues and they may be indolent or aggressive, as is the case with skin basal cell carcinoma (BCC) or cerebellar medulloblastoma, respectively. Little is known about common cell-intrinsic factors that control the development of such diverse Hh-dependent tumors.
View Article and Find Full Text PDFRecent evidence from a wide variety of biological systems has indicated important regulatory roles for post-translation histone modifications in cellular processes such as regulation of gene expression, DNA damage response and recombination. Phosphorylation of histone H2AX at serine 139 is a critical event in the response to DNA damage, but the functional implications of this modification are not yet clear. To investigate the role of H2AX phosphorylation we ectopically expressed epitope-tagged H2AX or mutants at the phosphorylation site.
View Article and Find Full Text PDFStem cells (SC) exhibit a unique capacity for self-renewal in an undifferentiated state. It is unclear whether the self-renewal of pluripotent embryonic SC (ESC) and of tissue-specific adult SC such as hematopoietic SC (HSC) is controlled by common mechanisms. The deletion of transcription factor Zfx impaired the self-renewal but not the differentiation capacity of murine ESC; conversely, Zfx overexpression facilitated ESC self-renewal by opposing differentiation.
View Article and Find Full Text PDFTrypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin.
View Article and Find Full Text PDFTrypanosoma cruzi epimastigotes were extracted under various conditions in order to examine the role of divalent cations in the solubilization of microtubule proteins. When epimastigotes were homogenized in the presence of 5 mM Mg+2 and 5 mM Ca+2, a protein kinase responsible for phosphorylating tubulin, as well as the tubulin that became phosphorylated, remained tightly associated with the parasite particulate and detergent-resistant fractions. On the contrary, tubulin kinase and its substrate were predominantly released into the parasite cytosolic and detergent-soluble fractions, when epimastigotes were extracted in the presence of 5 mM EDTA and 5 mM EGTA.
View Article and Find Full Text PDFOne predominant 55-kDa polypeptide was phosphorylated in vitro in Trypanosoma cruzi homogenates prepared from three differentiation stages: epimastigotes, trypomastigotes, and spheromastigotes. Anti-alpha and anti-beta tubulin monoclonal antibodies immunoprecipitated the phosphorylated 55-kDa polypeptide from epimastigote extracts. Phosphoserine was the only residue phosphorylated in vitro in the 55-kDa polypeptide and in immunoprecipitated alpha tubulin.
View Article and Find Full Text PDFTwo protein kinase activities that use casein as a substrate, Q-I and Q-II, were identified in the epimastigote stage of Trypanosoma cruzi upon chromatography on Q-Sepharose. Q-I was purified further through concanavalin A-sepharose (Q-I*) to remove any trace of the contaminating protease cruzipain. The optimal activity for Q-I* was obtained at pH 8.
View Article and Find Full Text PDF