Publications by authors named "Jose M Fuertes Garcia"

: This study presents a novel approach, based on a combination of radiomic feature extraction, data resampling techniques, and machine learning algorithms, for the detection of degraded bone structures in Dual X-ray Absorptiometry (DXA) images. This comprehensive approach, which addresses the critical aspects of the problem, distinguishes this work from previous studies, improving the performance achieved by the most similar studies. The primary aim is to provide clinicians with an accessible tool for quality bone assessment, which is currently limited.

View Article and Find Full Text PDF

Micro-structural parameters of the thoracic or lumbar spine generally carry insufficient accuracy and precision for clinical in vivo studies when assessed on quantitative computed tomography (QCT). We propose a 3D convolutional neural network with specific loss functions for QCT noise reduction to compute micro-structural parameters such as tissue mineral density (TMD) and bone volume ratio (BV/TV) with significantly higher accuracy than using no or standard noise reduction filters. The vertebra-phantom study contained high resolution peripheral and clinical CT scans with simulated in vivo CT noise and nine repetitions of three different tube currents (100, 250 and 360 mAs).

View Article and Find Full Text PDF