Understanding plant-microbe interactions with the possibility to modulate the plant's microbiome is essential to design new strategies for a more productive and sustainable agriculture and to maintain natural ecosystems. Therefore, a key question is how to design bacterial consortia that will yield the desired host phenotype. This work was designed to identify the potential genomic features involved in the interaction between and known host plants.
View Article and Find Full Text PDFXylanases are very often modular enzymes composed of one or more catalytic domains and carbohydrate-binding modules (CBMs) connected by a flexible linker region. Usually, when these proteins are processed they lose their carbohydrate-binding capacity. Here, the role of the linker regions and cellulose- or xylan-binding domains in the processing of Xys1L from Streptomyces halstedii JM8 and Xyl30L from Streptomyces avermitilis UAH30 was studied.
View Article and Find Full Text PDFOrganic anion-transporting polypeptides (OATPs) are involved in the liver uptake of many endogenous and xenobiotic compounds, such as bile acids and drugs, respectively. Using Xenopus laevis oocytes and Chinese hamster ovary (CHO) cells expressing rat Oatp1a1, human OATP1B1, or OATP1B3, the sensitivity of these transporters to extracellular/intracellular pH (pHo/pHi) and changes in plasma membrane potential (ΔΨ) was investigated. In X.
View Article and Find Full Text PDFA DNA fragment from the lignocellulolytic actinomycete Streptomyces avermitilis CECT 3339 was cloned using a DNA probe from the xylanase gene xysA of Streptomyces halstedii. The nucleotide sequence analysis revealed two potential ORFs, xyl30 and hd30, encoding a deduced multimodular F/10 xylanase with a binding domain and a secreted glycoxyl hydrolase, respectively. In Streptomyces lividans carrying the subcloned DNA fragment, two xylanase activity bands with estimated molecular masses of 42.
View Article and Find Full Text PDFThe secreted protein pattern of Streptomyces lividans depends on the carbon source present in the culture media. One protein that shows the most dramatic change is the high-affinity phosphate-binding protein PstS, which is strongly accumulated in the supernatant of liquid cultures containing high concentrations (>3 %) of certain sugars, such as fructose, galactose and mannose. The promoter region of this gene and that of its Streptomyces coelicolor homologue were used to drive the expression of a xylanase in S.
View Article and Find Full Text PDFThe expression of xysA, a gene encoding for an endoxylanase from Streptomyces halstedii JM8, is repressed by glucose. In order to define the regions involved in its regulation, several deletions were made in the 475 bp xysA promoter and were studied using the melC operon from S. glaucescens as a reporter.
View Article and Find Full Text PDFMutagenesis of the xylanase Xys1 of Streptomyces halstedii JM8 has been done by error prone PCR. Mutants with modified hydrolytic activity were isolated, the recombinant variant proteins purified and the catalytic activities of each one determined and compared with the wild type enzyme. Two of the isolated single point mutants, m1 (G133D) and m8 (N148D), showed 22-25% increase in specific activity towards xylan compared to wild type xylanase.
View Article and Find Full Text PDFThe xylanase Xys1L from Streptomyces halstedii JM8 is known to be processed extracellularly, to produce a protein of 33.7 kDa, Xys1S, that retains catalytic activity but not its cellulose-binding capacity. This paper demonstrates that at least five serine proteases isolated from Streptomyces spp.
View Article and Find Full Text PDFThe newly isolated strain Streptomyces sp. RSP9 produces two thiopeptides; one of them is methylsulfomycin I, which shows potent antibiotic activity against several gram-positive bacteria such as Micrococcus luteus and Staphylococcus aureus. The other is a new thiopeptide named radamycin.
View Article and Find Full Text PDFStreptomyces development is a complex process that eventually finishes with the formation of individual unigenomic spores from the aerial hyphae. Intraspecific and interspecific signals must play a key role in triggering or blocking this process. Here we show that interaction between two types of microorganisms, Streptomyces and yeasts, leads to alteration of the Streptomyces developmental program.
View Article and Find Full Text PDFThe enhanced green fluorescent protein (EGFP) gene is a modified version of the green fluorescent protein gene of the jellyfish Aequorea victoria with a codon usage that corresponds well to that found in many GC-rich streptomycete genes. Here the use of EGFP as a reporter for the analysis of spatially and temporally regulated gene expression in Streptomyces coelicolor A3(2) is demonstrated. The EGFP gene was inserted into plasmids that can replicate in Escherichia coli, greatly facilitating the construction of EGFP gene fusions.
View Article and Find Full Text PDF