Publications by authors named "Jose M Cecilia"

Environmental and water quality monitoring are of utmost interest in a context where land use changes, uncontrolled agricultural practices, human settlements, tourism and other activities affect a watershed and condition the usage of their surface waters. Such is the case of Mar Menor lagoon in Southeast of Spain, where the EU H2020 SMARTLAGOON project stands and is implementing an intelligent environmental infrastructure and modelling that will let the construction of a digital twin of the lagoon. Performing environmental monitoring is expensive and the number of sampling locations is typically limited by the budget.

View Article and Find Full Text PDF

We are witnessing the dramatic consequences of the COVID-19 pandemic which, unfortunately, go beyond the impact on the health system. Until herd immunity is achieved with vaccines, the only available mechanisms for controlling the pandemic are quarantines, perimeter closures and social distancing with the aim of reducing mobility. Governments only apply these measures for a reduced period, since they involve the closure of economic activities such as tourism, cultural activities, or nightlife.

View Article and Find Full Text PDF

Precision agriculture is a growing sector that improves traditional agricultural processes through the use of new technologies. In southeast Spain, farmers are continuously fighting against harsh conditions caused by the effects of climate change. Among these problems, the great variability of temperatures (up to 20 °C in the same day) stands out.

View Article and Find Full Text PDF

Internet of Things (IoT) is becoming a new socioeconomic revolution in which data and immediacy are the main ingredients. IoT generates large datasets on a daily basis but it is currently considered as "dark data", i.e.

View Article and Find Full Text PDF

The Mar Menor is a hypersaline coastal lagoon with high environmental value and a characteristic example of a highly anthropized hydro-ecosystem located in the southeast of Spain. An unprecedented eutrophication crisis in 2016 and 2019 with abrupt changes in the quality of its waters caused a great social alarm. Understanding and modeling the level of a eutrophication indicator, such as chlorophyll-a (Chl-a), benefits the management of this complex system.

View Article and Find Full Text PDF

Wireless acoustic sensor networks are nowadays an essential tool for noise pollution monitoring and managing in cities. The increased computing capacity of the nodes that create the network is allowing the addition of processing algorithms and artificial intelligence that provide more information about the sound sources and environment, e.g.

View Article and Find Full Text PDF

Motivation: Molecular docking methods are extensively used to predict the interaction between protein-ligand systems in terms of structure and binding affinity, through the optimization of a physics-based scoring function. However, the computational requirements of these simulations grow exponentially with: (i) the global optimization procedure, (ii) the number and degrees of freedom of molecular conformations generated and (iii) the mathematical complexity of the scoring function.

Results: In this work, we introduce a novel molecular docking method named METADOCK 2, which incorporates several novel features, such as (i) a ligand-dependent blind docking approach that exhaustively scans the whole protein surface to detect novel allosteric sites, (ii) an optimization method to enable the use of a wide branch of metaheuristics and (iii) a heterogeneous implementation based on multicore CPUs and multiple graphics processing units.

View Article and Find Full Text PDF

Road traffic pollution is one of the key factors affecting urban air quality. There is a consensus in the community that the efficient use of public transport is the most effective solution. In that sense, much effort has been made in the data mining discipline to come up with solutions able to anticipate taxi demands in a city.

View Article and Find Full Text PDF

The protein-folding problem has been extensively studied during the last fifty years. The understanding of the dynamics of global shape of a protein and the influence on its biological function can help us to discover new and more effective drugs to deal with diseases of pharmacological relevance. Different computational approaches have been developed by different researchers in order to foresee the threedimensional arrangement of atoms of proteins from their sequences.

View Article and Find Full Text PDF

Bioinformatics is an interdisciplinary research field that develops tools for the analysis of large biological databases, and, thus, the use of high performance computing (HPC) platforms is mandatory for the generation of useful biological knowledge. The latest generation of graphics processing units (GPUs) has democratized the use of HPC as they push desktop computers to cluster-level performance. Many applications within this field have been developed to leverage these powerful and low-cost architectures.

View Article and Find Full Text PDF

Conformational entropy calculation, usually computed by normal-mode analysis (NMA) or quasi harmonic analysis (QHA), is extremely time-consuming. Here, instead of NMA or QHA, a solvent accessible surface area (SASA) based model was employed to compute the conformational entropy, and a new fast GPU-based method called MURCIA (Molecular Unburied Rapid Calculation of Individual Areas) was implemented to accelerate the calculation of SASA for each atom. MURCIA employs two different kernels to determine the neighbors of each atom.

View Article and Find Full Text PDF

With the performance of central processing units (CPUs) having effectively reached a limit, parallel processing offers an alternative for applications with high computational demands. Modern graphics processing units (GPUs) are massively parallel processors that can execute simultaneously thousands of light-weight processes. In this study, we propose and implement a parallel GPU-based design of a popular method that is used for the analysis of brain magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

Background: Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact with drug targets. Most VS methods suppose a unique binding site for the target, usually derived from the interpretation of the protein crystal structure. However, it has been demonstrated that in many cases, diverse ligands interact with unrelated parts of the target and many VS methods do not take into account this relevant fact.

View Article and Find Full Text PDF

P systems or Membrane Systems provide a high-level computational modelling framework that combines the structure and dynamic aspects of biological systems in a relevant and understandable way. They are inherently parallel and non-deterministic computing devices. In this article, we discuss the motivation, design principles and key of the implementation of a simulator for the class of recognizer P systems with active membranes running on a (GPU).

View Article and Find Full Text PDF