Throughout the family of coronaviruses, structured RNA elements within the 5' region of the genome are highly conserved. The fifth stem-loop element from SARS-CoV-2 (5_SL5) represents an example of an RNA structural element, repeatedly occurring in coronaviruses. It contains a conserved, repetitive fold within its substructures SL5a and SL5b.
View Article and Find Full Text PDFInstruct-ERIC, "the European Research Infrastructure Consortium for Structural biology research," is a pan-European distributed research infrastructure making high-end technologies and methods in structural biology available to users. Here, we describe the current state-of-the-art of integrated structural biology and discuss potential future scientific developments as an impulse for the scientific community, many of which are located in Europe and are associated with Instruct. We reflect on where to focus scientific and technological initiatives within the distributed Instruct research infrastructure.
View Article and Find Full Text PDFImage-processing pipelines require the design of complex workflows combining many different steps that bring the raw acquired data to a final result with biological meaning. In the image-processing domain of cryo-electron microscopy single-particle analysis (cryo-EM SPA), hundreds of steps must be performed to obtain the three-dimensional structure of a biological macromolecule by integrating data spread over thousands of micrographs containing millions of copies of allegedly the same macromolecule. The execution of such complicated workflows demands a specific tool to keep track of all these steps performed.
View Article and Find Full Text PDFMicromachines (Basel)
September 2023
Cryogenic electron microscopy (Cryo-EM) has been established as one of the key players in structural biology. It can reconstruct a 3D model of a sample at a near-atomic resolution. With the increasing number of facilities, faster microscopes, and new imaging techniques, there is a growing demand for algorithms and programs able to process the so-called movie data produced by the microscopes in real time while preserving a high resolution and maximal information.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
April 2022
Structural biology has evolved greatly due to the advances introduced in fields like electron microscopy. This image-capturing technique, combined with improved algorithms and current data processing software, allows the recovery of different conformational states of a macromolecule, opening new possibilities for the study of its flexibility and dynamic events. However, the ensemble analysis of these different conformations, and in particular their placement into a common variable space in which the differences and similarities can be easily recognized, is not an easy matter.
View Article and Find Full Text PDFXmipp is an open-source software package consisting of multiple programs for processing data originating from electron microscopy and electron tomography, designed and managed by the Biocomputing Unit of the Spanish National Center for Biotechnology, although with contributions from many other developers over the world. During its 25 years of existence, Xmipp underwent multiple changes and updates. While there were many publications related to new programs and functionality added to Xmipp, there is no single publication on the Xmipp as a package since 2013.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
Cryo-EM maps are valuable sources of information for protein structure modeling. However, due to the loss of contrast at high frequencies, they generally need to be post-processed to improve their interpretability. Most popular approaches, based on global B-factor correction, suffer from limitations.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
June 2021
Principal component analysis (PCA) has been widely proposed to analyze flexibility and heterogeneity in cryo-electron microscopy (cryoEM). In this paper, it is argued that (i) PCA is an excellent technique to describe continuous flexibility at low resolution (but not so much at high resolution) and (ii) PCA components should be analyzed in a concerted manner (and not independently).
View Article and Find Full Text PDFSummary: The web platform 3DBionotes-WS integrates multiple web services and an interactive web viewer to provide a unified environment in which biological annotations can be analyzed in their structural context. Since the COVID-19 outbreak, new structural data from many viral proteins have been provided at a very fast pace. This effort includes many cryogenic electron microscopy (cryo-EM) studies, together with more traditional ones (X-rays, NMR), using several modeling approaches and complemented with structural predictions.
View Article and Find Full Text PDFCoiled-coil protein origami (CCPO) is a modular strategy for the de novo design of polypeptide nanostructures. CCPO folds are defined by the sequential order of concatenated orthogonal coiled-coil (CC) dimer-forming peptides, where a single-chain protein is programmed to fold into a polyhedral cage. Self-assembly of CC-based nanostructures from several chains, similarly as in DNA nanotechnology, could facilitate the design of more complex assemblies and the introduction of functionalities.
View Article and Find Full Text PDFIn recent years, advances in cryoEM have dramatically increased the resolution of reconstructions and, with it, the number of solved atomic models. It is widely accepted that the quality of cryoEM maps varies locally; therefore, the evaluation of the maps-derived structural models must be done locally as well. In this article, a method for the local analysis of the map-to-model fit is presented.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is a highly dynamic network of membranes. Here, we combine live-cell microscopy with in situ cryo-electron tomography to directly visualize ER dynamics in several secretory cell types including pancreatic β-cells and neurons under near-native conditions. Using these imaging approaches, we identify a novel, mobile form of ER, ribosome-associated vesicles (RAVs), found primarily in the cell periphery, which is conserved across different cell types and species.
View Article and Find Full Text PDFThe introduction of local resolution has enormously helped the understanding of cryo-EM maps. Still, for any given pixel it is a global, aggregated value, that makes impossible the individual analysis of the contribution of the different projection directions. We introduce MonoDir, a fully automatic, parameter-free method that, starting only from the final cryo-EM map, decomposes local resolution into the different projection directions, providing a detailed level of analysis of the final map.
View Article and Find Full Text PDFIn this article, a method is presented to estimate a new local quality measure for 3D cryoEM maps that adopts the form of a 'local resolution' type of information. The algorithm () is based on deep-learning 3D feature detection. is fully automatic and parameter-free, and avoids the issues of most current methods, such as their insensitivity to enhancements owing to -factor sharpening (unless the 3D mask is changed), among others, which is an issue that has been virtually neglected in the cryoEM field until now.
View Article and Find Full Text PDFMotivation: Recent technological advances and computational developments have allowed the reconstruction of Cryo-Electron Microscopy (cryo-EM) maps at near-atomic resolution. On a typical workflow and once the cryo-EM map has been calculated, a sharpening process is usually performed to enhance map visualization, a step that has proven very important in the key task of structural modeling. However, sharpening approaches, in general, neglects the local quality of the map, which is clearly suboptimal.
View Article and Find Full Text PDFMonoclonal antibody (mAb) cooperativity is a phenomenon triggered when mAbs couples promote increased bactericidal killing compared to individual partners. Cooperativity has been deeply investigated among mAbs elicited by factor H-binding protein (fHbp), a surface-exposed lipoprotein and one of the key antigens included in both serogroup B meningococcus vaccine Bexsero and Trumenba. Here we report the structural and functional characterization of two cooperative mAbs pairs isolated from Bexsero vaccines.
View Article and Find Full Text PDFThe West-Life project (https://about.west-life.eu/) is a Horizon 2020 project funded by the European Commission to provide data processing and data management services for the international community of structural biologists, and in particular to support integrative experimental approaches within the field of structural biology.
View Article and Find Full Text PDFMotivation: Cryo electron microscopy (EM) is currently one of the main tools to reveal the structural information of biological macromolecules. The re-construction of three-dimensional (3D) maps is typically carried out following an iterative process that requires an initial estimation of the 3D map to be refined in subsequent steps. Therefore, its determination is key in the quality of the final results, and there are cases in which it is still an open issue in single particle analysis (SPA).
View Article and Find Full Text PDF