Cystatin F (CstF) is a protease inhibitor of cysteine cathepsins, including those involved in activating the perforin/granzyme cytotoxic pathways. It is targeted at the endolysosomal pathway but can also be secreted to the extracellular milieu or endocytosed by bystander cells. CstF was shown to be significantly increased in tuberculous pleurisy, and during HIV coinfection, pleural fluids display high viral loads.
View Article and Find Full Text PDFTuberculosis and AIDS remain two of the most relevant human infectious diseases. The pathogens that cause them, (Mtb) and HIV, individually elicit an immune response that treads the line between beneficial and detrimental to the host. Co-infection further complexifies this response since the different cytokines acting on one infection might facilitate the dissemination of the other.
View Article and Find Full Text PDFDespite the success of combined antiretroviral therapy in controlling viral load and reducing the risk of human immunodeficiency virus (HIV) transmission, an estimated 1.5 million new infections occurred worldwide in 2021. These new infections are mainly the result of sexual intercourse and thus involve cells present on the genital mucosa, such as dendritic cells (DCs), macrophages (Mø) and CD4+ T lymphocytes.
View Article and Find Full Text PDFTuberculosis (TB) treatment relies primarily on 70-year-old drugs, and prophylaxis suffers from the lack of an effective vaccine. Among the 10 million people exhibiting disease symptoms yearly, 450,000 have multidrug or extensively drug-resistant (MDR or XDR) TB. A greater understanding of host and pathogen interactions will lead to new therapeutic interventions for TB eradication.
View Article and Find Full Text PDF(Mtb), the causative agent of human tuberculosis (TB), is one of the most successfully adapted human pathogens. Human-to-human transmission occurs at high rates through aerosols containing bacteria, but the pathogen evolved prior to the establishment of crowded populations. Mtb has developed a particular strategy to ensure persistence in the host until an opportunity for transmission arises.
View Article and Find Full Text PDFMacrophages (Mø) and dendritic cells (DCs) are key players in human immunodeficiency virus (HIV) infection and pathogenesis. They are essential for the spread of HIV to CD4+ T lymphocytes (TCD4+) during acute infection. In addition, they constitute a persistently infected reservoir in which viral production is maintained for long periods of time during chronic infection.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV) and (Mtb) are pathogens responsible for millions of new infections each year; together, they cause high morbidity and mortality worldwide. In addition, late-stage HIV infection increases the risk of developing tuberculosis (TB) by a factor of 20 in latently infected people, and even patients with controlled HIV infection on antiretroviral therapy (ART) have a fourfold increased risk of developing TB. Conversely, Mtb infection exacerbates HIV pathogenesis and increases the rate of AIDS progression.
View Article and Find Full Text PDFThe golden age of antibiotics for tuberculosis (TB) is marked by its success in the 1950s of the last century. However, TB is not under control, and the rise in antibiotic resistance worldwide is a major threat to global health care. Understanding the complex interactions between TB bacilli and their host can inform the rational design of better TB therapeutics, including vaccines, new antibiotics, and host-directed therapies.
View Article and Find Full Text PDFis able to establish a chronic colonization of lung macrophages in a controlled replication manner, giving rise to a so-called latent infection. Conversely, when intracellular bacteria undergo actively uncontrolled replication rates, they provide the switch for the active infection called tuberculosis to occur. Our group found that the pathogen is able to manipulate the activity of endolysosomal enzymes, cathepsins, directly at the level of gene expression or indirectly by regulating their natural inhibitors, cystatins.
View Article and Find Full Text PDFCathepsins were first described, as endolysosomal proteolytic enzymes in reference to the organelles where they degrade the bulk of endogenous and exogenous substrates in a slightly acidic environment. These substrates include pathogens internalized endocytosis and/or marked for destruction by autophagy. However, the role of cathepsins during infection far exceeds that of direct digestion of the pathogen.
View Article and Find Full Text PDFTuberculosis owes its resurgence as a major global health threat mostly to the emergence of drug resistance and coinfection with HIV. The synergy between HIV and (Mtb) modifies the host immune environment to enhance both viral and bacterial replication and spread. In the lung immune context, both pathogens infect macrophages, establishing favorable intracellular niches.
View Article and Find Full Text PDFWhen the first cases of HIV infection appeared in the 1980s, AIDS was a deadly disease without any therapeutic alternatives. Currently, there is still no cure for most cases mainly due to the multiple tissues that act as a reservoir for this virus besides the high viral mutagenesis that leads to an antiretroviral drug resistance. Throughout the years, multiple drugs with specific mechanisms of action on distinct targets have been approved.
View Article and Find Full Text PDFThe moment a very old bacterial pathogen met a young virus from the 80's defined the beginning of a tragic syndemic for humanity. Such is the case for the causative agent of tuberculosis and the human immunodeficiency virus (HIV). Syndemic is by definition a convergence of more than one disease resulting in magnification of their burden.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses innumerous challenges, like understanding what triggered the emergence of this new human virus, how this RNA virus is evolving or how the variability of viral genome may impact the primary structure of proteins that are targets for vaccine. We analyzed 19471 SARS-CoV-2 genomes available at the GISAID database from all over the world and 3335 genomes of other Coronoviridae family members available at GenBank, collecting SARS-CoV-2 high-quality genomes and distinct Coronoviridae family genomes. Additionally, we analyzed 199,984 spike glycoprotein sequences.
View Article and Find Full Text PDFDespite the available antibiotics, tuberculosis (TB) has made its return since the 90's of the last century as a global threat mostly due to co-infection with HIV, to the emergence of drug resistant strains and the lack of an effective vaccine. Host-directed strategies could be exploited to improve treatment efficacy, contain drug-resistant strains, improve immune responses and reduce disease severity. Macrophages in the lungs are often found infected with (Mtb) and/or with HIV.
View Article and Find Full Text PDFThe main goal of this work was to identify molecular signatures in envelope surface glycoprotein that may be correlated with coreceptor usage by different human immunodeficiency virus (HIV)-2 strains. From inspection of aligned HIV-2 sequences, we verified that V1/V2 region showed the highest degree of amino acid sequence heterogeneity, including polymorphisms in N-linked glycosylation sites, sequence, and length. Furthermore, we did not find any correlation between the net charge and specific amino acid positions in V3 region with any particular coreceptor usage pattern.
View Article and Find Full Text PDFDiversity of the founding population of Human Immunodeficiency Virus Type 1 (HIV-1) transmissions raises many important biological, clinical, and epidemiological issues. In up to 40% of sexual infections, there is clear evidence for multiple founding variants, which can influence the efficacy of putative prevention methods, and the reconstruction of epidemiologic histories. To infer who-infected-whom, and to compute the probability of alternative transmission scenarios while explicitly taking phylogenetic uncertainty into account, we created an approximate Bayesian computation (ABC) method based on a set of statistics measuring phylogenetic topology, branch lengths, and genetic diversity.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are powerful regulators of gene expression and fine-tuning genes in all tissues. Cellular miRNAs can control 100s of biologic processes (e.g.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are small non-coding RNAs important in gene regulation. They are able to regulate mRNA translation through base-pair complementarity. Cellular miRNAs have been involved in the regulation of nearly all cellular pathways, and their deregulation has been associated with several diseases such as cancer.
View Article and Find Full Text PDFMicroRNAs are small non-coding RNAs that modulate protein production by post-transcriptional gene regulation. They impose gene expression control by interfering with mRNA translation and stability in cell cytoplasm through a mechanism involving specific binding to mRNA based on base pair complementarity. Because of their intracellular replication cycle it is no surprise that viruses evolved in a way that allows them to use microRNAs to infect, replicate and persist in host cells.
View Article and Find Full Text PDFObjective: To develop a novel and potent fusion inhibitor of HIV infection based on a rational strategy for synthetic antibody library construction.
Design: The reduced molecular weight of single-domain antibodies (sdAbs) allows targeting of cryptic epitopes, the most conserved and critical ones in the context of HIV entry. Heavy-chain sdAbs from camelids are particularly suited for this type of epitope recognition because of the presence of long and flexible antigen-binding regions [complementary-determining regions (CDRs)].
HIV-1 and HIV-2 are the causal agents of AIDS. While similar in many ways, a significant amount of data suggests that HIV-2 is less virulent than HIV-1. In fact, HIV-2 infection is characterized by a longer asymptomatic stage and lower transmission rate, and the majority of HIV-2-infected patients can be classified as long-term non-progressors or elite controllers.
View Article and Find Full Text PDFBackground: Human immunodeficiency virus 1 and 2 (HIV-1 and HIV-2) use cellular receptors in distinct ways. Besides a more promiscuous usage of coreceptors by HIV-2 and a more frequent detection of CD4-independent HIV-2 isolates, we have previously identified two HIV-2 isolates (HIV-2MIC97 and HIV-2MJC97) that do not use the two major HIV coreceptors: CCR5 and CXCR4. All these features suggest that in HIV-2 the Env glycoprotein subunits may have a different structural organization enabling distinct - although probably less efficient - interactions with cellular receptors.
View Article and Find Full Text PDFDendritic cells are professional antigen-presenting cells and key elements of both innate and adaptive immunity. Tissues like skin and mucosal epithelium, more exposed to the environment, are particularly rich in dendritic cells. Given that HIV is mainly transmitted through mucosal surfaces, the cellular mechanisms governing the initial interactions between HIV and dendritic cells are crucial for establishing systemic infection in a new host.
View Article and Find Full Text PDF