The effect of silver on the phase transition and microstructure of titanium oxide films grown by pulsed cathodic arc had been investigated by XRD, SEM and Raman spectroscopy. Following successive thermal annealing up to 1000 °C, microstructural analysis of annealed Ag-TiO2 films reveals that the incorporation of Ag nanoparticles strongly affects the transition temperature from the initial metastable amorphous phase to anatase and stable rutile phase. An increase of silver content into TiO2 matrix inhibits the amorphous to anatase phase transition, raising its temperature boundary and, simultaneously reduces the transition temperature to promote rutile structure at lower value of 600 °C.
View Article and Find Full Text PDFThe design of reproducible and more efficient nanofabrication routes has become a very active research field in recent years. In particular, the development of new methods for micro- and nanopatterning materials surfaces has attracted the attention of many researchers in industry and academia as a consequence of the growing relevance of patterned surfaces in many technological fields, ranging from optoelectronics to biotechnology. In this work we explore, discuss, and demonstrate the possibility of extending the well-known molding and replication strategy for patterning ceramic materials with nanoscale resolution.
View Article and Find Full Text PDF