The soil-plant transfer of trace elements is a complex system in which many factors are involved such as the availability and bioavailability of elements in the soil, climate, pedological parameters, and the essential or toxic character of the elements. The present study proposes the evaluation of the use of multielement contents in vascular plants for prospecting ore deposits of trace elements of strategic interest for Europe. To accomplish this general goal, a study of the soil-plant transfer of major and trace elements using Quercus ilex as a study plant has been developed in the context of two geological domains with very different characteristics in geological terms and in the presence of ore deposits: the Almadén syncline for Hg and the Guadalmez syncline for Sb.
View Article and Find Full Text PDFIn the eruptive event of Tajogaite (2021) in La Palma, Canary Islands, large quantities of volcanic ash were accumulated, affecting the local environment and urban areas. In this study, volcanic ash sampled from urban areas (catalogued as municipal waste (20 03 03) by the European Wastes Catalogue) were converted into zeolites by hydrothermal synthesis at 100 °C with previous alkaline fusion at 550 °C with distilled water. During this process, new phases of zeolite principally type X and sodalite have been identified by XRD at 2 h of incubation.
View Article and Find Full Text PDFMicrobial processes can influence the complex geochemical behaviour of the toxic metalloid antimony (Sb) in mining environments. The present study is aimed to evaluate the influence of microbial communities on the mobility of Sb from solid phases to water in different compartments and redox conditions of a mining site in southwest (SW) Spain. Samples of surface materials presenting high Sb concentrations, from two weathered mining waste dumps, and an aquatic sediment were incubated in slurries comparing oxic and anoxic conditions.
View Article and Find Full Text PDFThe distribution of heavy metals in plants (Castanea sativa, Sambucus nigra, Verbascum thapsus, Popolus spp., Salix spp., Acer pseudoplatanus, Robinia pseudoacacia) growing in soils from active and abandoned mining areas is of scientific significance as it allows to recognize their ability to survive in a hostile environment and provide useful indications for phytoremediation operations.
View Article and Find Full Text PDFThe distribution of heavy metals in plants growing in soils from active and abandoned mining areas is of scientific significance as it allows one to recognize their ability to survive in a hostile environment and to provide useful indications for phytoremediation operations. In this work, soils developed in the former Hg-mining area of Abbadia San Salvatore (Tuscany, Central Italy) were analyzed for total, leached Hg, % of organic- and inorganic-related Hg. The dehydrogenase enzyme activity (DHA) was also measured with the aim to evaluate the status of the soil, being characterized by high Hg content.
View Article and Find Full Text PDFThis work aims to establish Sb mobility, its transfer to biota and its effect on soil health in a semi-arid climate. The results show the presence of stibnite (SbS) as the main primary Sb compound, bindhemite (PbSbO(O,OH)), and minor proportions of stibiconite (Sb(Sb)O(OH)) as oxidised Sb species. This research also observes very high total Sb contents in mining materials (max: 20,000 mg kg) and soils (400-3000 mg kg), with physical dispersion around mining materials restricted to 450 m.
View Article and Find Full Text PDFThis study aims to use geochemical, mineralogical, ecotoxicological and biological indicators for a comprehensive assessment of the ecological risks related to the mobility, ecotoxicity and bioavailability of potentially harmful elements in the Lousal mining district. Particularly, toxicity was evaluated using four assays: algae, cytotoxicity assays with HaCaT cell line (dermal), earthworms and . The geochemical and mineralogical characterization of the studied area shows that the mine wastes underwent intense weathering processes, producing important contamination of the adjacent soils, which also led to the release and mobilization of PHEs into nearby water courses.
View Article and Find Full Text PDFMine tailings are a potential source of environmental pollution because they typically contain potentially toxic elements (PTEs) and the residue of chemical compounds used during extraction processes. The Remance gold mine (NW Panama) is a decommissioned mine with mining activity records dating from the 1800s and several periods of abandonment. Very little remediation work has been performed, and waste is exposed to climatic conditions.
View Article and Find Full Text PDFEnviron Geochem Health
January 2023
Mining affects the environment, particularly through the persistence of accumulation of tailings materials; this is aggravated under tropical climatic conditions, which favours the release of potentially toxic elements (PTEs) bioavailable to the local flora and fauna and supposing a risk to human health. The Remance gold mine (Panamá), exploited intermittently for more than 100 years, and has remained derelict for over 20 years. Within the area live farmers who carry out subsistence agriculture and livestock activities.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2021
The proposed Minamata Convention ban on the use of fluorescent lamps at the end of 2020, with a consequent reduction in mercury (Hg) light products, is expected to produce large amounts of discarded fluorescent bulbs. In this context, the most effective recycling options are a thermal mercury recovery system and/or aqueous solution leaching (lixiviation) to recover rare earth elements (REEs). Due to the heterogeneous nature of these wastes, a complete characterization of Hg compounds in addition to a determination of their desorption temperatures is required for their recycling.
View Article and Find Full Text PDFThe derelict Remance gold mine is a possible source of pollution with potentially toxic elements (PTEs). In the study area, diverse mine waste has been left behind and exposed to weather conditions, and poses risks for soil, plants and water bodies, and also for the health of local inhabitants. This study sought to perform an ecological and health risk assessment of derelict gold mining areas with incomplete remediation, including: (i) characterizing the geochemical distribution of PTEs; (ii) assessing ecological risk by estimating the pollution load index (PLI) and potential ecological risk index (RI); (iii) assessing soil health by dehydrogenase activity; and iv) establishing non-carcinogenic (HI) and carcinogenic risks (CR) for local inhabitants.
View Article and Find Full Text PDFInt J Environ Res Public Health
May 2021
The biomonitoring of atmospheric mercury (Hg) is an important topic in the recent scientific literature given the cost-benefit advantage of obtaining indirect measurements of gaseous Hg using biological tissues. Lichens, mosses, and trees are the most commonly used organisms, with many standardized methods for some of them used across European countries by scientists and pollution regulators. Most of the species used the uptake of gaseous Hg (plant leaves), or a mixture of gaseous and particulate Hg (mosses and lichens), but no method is capable of differentiating between main atmospheric Hg phases (particulate and gaseous), essential in a risk assessment.
View Article and Find Full Text PDFMining activities frequently leave a legacy of residues that remain in the area for long periods causing the pollution of surroundings. We studied on a 100 year-old mine, the behavior of potentially toxic elements (PTEs) and their ecotoxicological impact on activity and diversity of microorganisms. The PTEs contamination assessment allowed the classification of the materials as highly (reference- and contaminated-samples) and very highly polluted (illegal spill of olive mill wastes (OMW), tailings, and dumps).
View Article and Find Full Text PDFMonazite ((Ce, La, Nd, Th) PO) is a rare and strategic mineral that occurs naturally as an accessory and minor mineral in diverse igneous and metamorphic rocks. This mineral does not frequently form mineable ore deposits and it has different typologies, including those formed by endogenous processes (generally "yellow monazite" mineralizations) and those formed by exogenous processes ("gray monazite" mineralizations). The mineral is an important ore of Rare Earth Elements (REEs), which have been identified by the European Union as critical raw materials.
View Article and Find Full Text PDFElements in mining extracts can be potentially toxic if they are incorporated into soils, sediments or biota. Numerous approaches have been used to assess this problem, and these include sequential extractions and selective extractions. These two methods have limitations and advantages, and their combined use usually provides a rough estimate of the availability or (bio)availability of potentially toxic elements and, therefore, of their real potential as toxicants in food chains.
View Article and Find Full Text PDFSoil pollution associated with potentially toxic elements (PTEs) from mining residues is a significant problem worldwide. The decommissioned Jebal Trozza mine, located in central Tunisia, may pose a serious problem because of the possible high concentrations of PTEs present in its wastes. This mine is a potential source of contamination for agriculture in this area due to both direct causes (pollution of agricultural soils) and indirect causes (pollution of sediments that accumulate in a dam used for irrigation).
View Article and Find Full Text PDFEnviron Geochem Health
October 2020
Mercury (Hg) exchange at the plant leaf-atmosphere interface is an important issue when considering vegetation as a sink or source of this global pollutant. The aim of the study described here was to clarify this process by studying Hg exchange under laboratory conditions with a plant model, namely Epipremnum aureum. The desorption and absorption processes were studied under similar conditions in natural daylight.
View Article and Find Full Text PDFThis manuscript reported data for total suspended particulate matter (TSPM), particle-bound mercury (PBM), and total gaseous mercury (TGM) in Almadenejos, a rural zone of ancient Hg mining and metallurgical works. Concentrations of TSPM characterize the study site as being a rural area, with levels below 40 μg m during most of the year and sporadic events involving dust intrusions from Africa. Mercury speciation of PM and nearby soils, which contain both cinnabar and organic Hg, confirms that the PM comes from local soil emissions involving the soils polluted by ancient metallurgical works.
View Article and Find Full Text PDFThe use of trees for biomonitoring of mercury (Hg) and other atmospheric pollutants is of increasing importance today. Leaves from different species have been the most widely used plant organ for this purpose, but only pine bark, and not leaves, was used to monitor Hg pollution. In Almadén (South Central Spain), the largest cinnabar (HgS) deposits in the world have been mined for over 2000 years to obtain metallic Hg and this activity has caused the widespread dispersion of this toxic element in the local environment.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2019
Castilla-La Mancha (central Spain) is a region characterized by significant agricultural production aimed at high-quality food products such as wine and olive oil. The quality of agricultural products depends directly on the soil quality. Soil geochemistry, including dispersion maps and the recognition of baselines and anomalies of various origins, is the most important tool to assess soil quality.
View Article and Find Full Text PDFSediments from the Castilseras reservoir, located downstream on the Valdeazogues River in the Almadén mercury district, were collected to assess the potential contamination status related to metals(oids) associated with river sediment inputs from several decommissioned mines. Metals(oids) concentrations in the reservoir sediments were investigated using different physical and chemical techniques. The results were analyzed by principal component analysis (PCA) to explain the correlations between the sets of variables.
View Article and Find Full Text PDFMercury contents in soil and olive tree leaves have been studied in 69 plots around three different source areas of this element in Spain: Almadén (Ciudad Real), Flix (Tarragona) and Jódar (Jaén). Almadén was the world's largest cinnabar (HgS) mining district and was active until 2003, Flix is the oldest Spanish chlor-alkali plant (CAP) and has been active from 1898 to the present day and Jódar is a decommissioned CAP that was active for 14 years (1977-1991). Total mercury contents have been measured by high-frequency modulation atomic absorption spectrometry with Zeeman effect (ZAAS-HFM) in the soils and olive tree leaves from the three studied areas.
View Article and Find Full Text PDFAn integrated analysis approach has been applied to a mercury (Hg) case study on a chlor-alkali plant located in the Ebro River basin, close to the town of Flix (NE Spain). The study focused on atmospheric Hg and its incorporation in soils and lichens close to a mercury cell chlor-alkali plant (CAP), which has been operating since the end of the 19th century. Atmospheric Hg present in the area was characterized by means of seven total gaseous mercury (TGM) surveys carried out from 2007 to 2012.
View Article and Find Full Text PDFWe show the first estimations of long-term (100 years, 1900 to 2000) total gaseous mercury concentrations (TGM) in the urban area of Almadén. The estimation was carried out by comparing data on known metallic mercury production with measured TGM concentrations. The estimated diurnal background level ranges from 60 to 120 ng m(-3) and corresponds to periods when the metallurgical complex (cinnabar roasting plant) was shut down.
View Article and Find Full Text PDFMercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, [Formula: see text]), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration of atmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent.
View Article and Find Full Text PDF