The capability of a mobile robot to efficiently and safely perform complex missions is limited by its knowledge of the environment, namely the . Advanced reasoning, decision-making, and execution skills enable an intelligent agent to act autonomously in unknown environments. Situational Awareness (SA) is a fundamental capability of humans that has been deeply studied in various fields, such as psychology, military, aerospace, and education.
View Article and Find Full Text PDFEfficient localisation plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned Aerial Vehicles (UAVs), which contributes to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities to enhance the localisation of UAVs and UGVs. In this paper, we review radio frequency (RF)-based approaches to localisation.
View Article and Find Full Text PDFIn recent years, Simultaneous Localization and Mapping (SLAM) systems have shown significant performance, accuracy, and efficiency gain. In this regard, Visual Simultaneous Localization and Mapping (VSLAM) methods refer to the SLAM approaches that employ cameras for pose estimation and map reconstruction and are preferred over Light Detection And Ranging (LiDAR)-based methods due to their lighter weight, lower acquisition costs, and richer environment representation. Hence, several VSLAM approaches have evolved using different camera types (e.
View Article and Find Full Text PDFThe seemingly simple step of molding a cholesteric liquid crystal into spherical shape, yielding a Cholesteric Spherical Reflector (CSR), has profound optical consequences that open a range of opportunities for potentially transformative technologies. The chiral Bragg diffraction resulting from the helical self-assembly of cholesterics becomes omnidirectional in CSRs. This turns them into selective retroreflectors that are exceptionally easy to distinguish-regardless of background-by simple and low-cost machine vision, while at the same time they can be made largely imperceptible to human vision.
View Article and Find Full Text PDFUnsupervised learning for monocular camera motion and 3D scene understanding has gained popularity over traditional methods, which rely on epipolar geometry or non-linear optimization. Notably, deep learning can overcome many issues of monocular vision, such as perceptual aliasing, low-textured areas, scale drift, and degenerate motions. In addition, concerning supervised learning, we can fully leverage video stream data without the need for depth or motion labels.
View Article and Find Full Text PDFThe spread of Unmanned Aerial Vehicles (UAVs) in the last decade revolutionized many applications fields. Most investigated research topics focus on increasing autonomy during operational campaigns, environmental monitoring, surveillance, maps, and labeling. To achieve such complex goals, a high-level module is exploited to build semantic knowledge leveraging the outputs of the low-level module that takes data acquired from multiple sensors and extracts information concerning what is sensed.
View Article and Find Full Text PDFAutonomous route following with road vehicles has gained popularity in the last few decades. In order to provide highly automated driver assistance systems, different types and combinations of sensors have been presented in the literature. However, most of these approaches apply quite sophisticated and expensive sensors, and hence, the development of a cost-efficient solution still remains a challenging problem.
View Article and Find Full Text PDFLateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability.
View Article and Find Full Text PDF