Publications by authors named "Jose Luis R Gallego"

Here we addressed the capacity of distinct amendments to reduce arsenic (As), copper (Cu), selenium (Se) and zinc (Zn) associated risks and improve the biogeochemical functions of post-mining soil. To this, we examined nanoparticles (NPs) and/or biochar effects, combined with phytostabilization using Lolium perenne L. Soil samples were taken in a former metal mine surroundings.

View Article and Find Full Text PDF

Phytoremediation is a cost-effective nature-based solution for brownfield reclamation. The choice of phytoextraction or phytostabilization strategies is highly relevant when planning full-scale treatments. A suitable approach to identify such species involves the evaluation of plants that grow spontaneously on the contaminated sites.

View Article and Find Full Text PDF

Abandoned brownfields represent a challenge for their recovery. To apply sustainable remediation technologies, such as bioremediation or phytoremediation, indigenous microorganisms are essential agents since they are adapted to the ecology of the soil. Better understanding of microbial communities inhabiting those soils, identification of microorganisms that drive detoxification process and recognising their needs and interactions will significantly improve the outcome of the remediation.

View Article and Find Full Text PDF

Biochar is a promising material used for multiple remediation approaches, mainly in polluted soils. Its properties can differ depending on feedstock and pyrolysis temperature. In this context, we tested the capacity of three biochar products made from corncob, pyrolyzed at different temperatures (350, 500, and 650 °C), to remediate a mining soil affected by high levels of Cu and As.

View Article and Find Full Text PDF

An innovative combination of metagenomic profiling of microbial communities and GC-MS & Pyrolysis-GC-MS fingerprinting methods were used to assess the biodegradation of contaminated soil from the Burgan oil field in Kuwait. The soil was treated with (sludge) compost in microcosms to evaluate the feasibility of this material for bioremediation purposes. The most favourable trial showed a > 80% decrease in TPH, thereby indicating strong potential for full-scale application using a cost-effective technology and thus in line with the principles of the circular economy.

View Article and Find Full Text PDF

In the present work, the operational conditions for improving the degradation rates of Total Petroleum Hydrocarbons (TPHs) in contaminated soil from a machinery park were optimized at a microcosms scale along a 90-days incubation period. In this study, bioremediation strategies and an organic amendment have been tested to verify the remediation of soil contaminated with different hydrocarbons, mineral oils, and heavy metals. Specifically, designed biostimulation and bioaugmentation strategies were compared with and without adding vermicompost.

View Article and Find Full Text PDF

The remediation of legacy metal(loid) contaminated soils in-situ relies on the addition of [organic] amendments to reduce the mobility and bioavailability of metal(loid)s, improve soil geochemical parameters and restore vegetation growth. Two vermicomposts of food and animal manure waste origin (V and V) were amended to an arsenic (As) and copper (Cu) contaminated mine soil (≤1500 mg kg). Leaching columns and pot experiments evaluated copper and arsenic in soil pore waters, as well as pH, dissolved organic carbon (DOC) and phosphate (PO) concentrations.

View Article and Find Full Text PDF

Bacteria play crucial roles in the biogeochemical cycle of arsenic (As) and selenium (Se) as these elements are metabolized via detoxification, energy generation (anaerobic respiration) and biosynthesis (e.g. selenocysteine) strategies.

View Article and Find Full Text PDF

Mining and biomass waste were used to remediate a brownfield affected by As, Cd, Cu, Pb and Zn pollution in a pilot scale experiment, and a plant used for phytoremediation purposes was used as an indicator of possible toxicological effects. To carry out the experiments, plots in field conditions were treated with magnesite (mining waste), magnesite-sludge compost, and magnesite-biochar respectively, while untreated soil was used as a control. The plots were then irrigated and left for one week, after which seeds of the ryegrass Lolium perenne L.

View Article and Find Full Text PDF

Here we addressed the remediation of a soil severely contaminated by Cu, Cd, Pb and Zn. In this regard, we tested the capacity of magnesite and biochar, inorganic and organic soil amendments, respectively, to reduce metal availability and improve soil properties. To this end, 1-kg pots containing the polluted soil were amended with either magnesite or biochar.

View Article and Find Full Text PDF

Nanoscale Zero-Valent Iron (nZVI) is a cost-effective nanomaterial that is widely used to remove a broad range of metal(loid)s and organic contaminants from soil and groundwater. In some cases, this material alters the taxonomic and functional composition of the bacterial communities present in these matrices; however, there is no conclusive data that can be generalized to all scenarios. Here we studied the effect of nZVI application on groundwater from the site of an abandoned fertilizer factory in Asturias, Spain, mainly polluted with arsenic (As).

View Article and Find Full Text PDF

Here we tested the capacity of zero valent iron nanoparticles (nZVI) combined with two organic amendments, namely, compost and biochar, to immobilize metal(oid)s such as As, Cu, Pb, and Zn. In addition, the effects of the amendments on the development of Brassica juncea L., a plant widely used for phytoremediation purposes, were also examined.

View Article and Find Full Text PDF

Hg and As mining-metallurgy plants have severely impacted environmental compartments. La Soterraña site (northern Spain) has been previously studied in this context. However, here we used a novel multi-purpose forensic approach to examine accumulations not only of mining-metallurgical waste (volumes above 80,000 t) but also C&D waste as a repository of pollutants (above 10% of As leached in standard tests) at this site.

View Article and Find Full Text PDF

The capacity of graphene oxide nanoparticles (nGOx) to reduce or increase As and metals availability in polluted soils was compared with that of zero valent iron nanoparticles (nZVI). The nanomaterials used in this study were characterized by X-ray techniques, CHNS-O analysis, dynamic light scattering, and microscopy procedures such as atomic force microscopy. To assess the capacity of these materials to immobilize pollutants, field samples of two soils were treated with nZVI and nGOx at a range of doses (0.

View Article and Find Full Text PDF

Arsenic is a potentially toxic element of concern for environmental compartments, and it is a frequent pollutant in many abandoned industrial sites. In this study, geochemical and hydrogeological tools were used to determine the long-term effects of As-rich pyrite ash disposal (83,000 m as estimated by geostatistical tools) in a brownfield located over a quaternary alluvial aquifer. Throughout the site, soil pollution and water table oscillation led to leachates in the form of both run-off and infiltration waters, thereby reducing (ground)water quality (e.

View Article and Find Full Text PDF

Marine oil spills are typically followed by complex clean-up and monitoring operations of the shorelines affected. In this regard, determination of the changes in the chemical composition of the spilled product is crucial for evaluation purposes. The "GC-MS fingerprint" approach requires the identification of several key parameters in order to differentiate between weathering processes.

View Article and Find Full Text PDF

The aim of this study was to investigate the potential of indigenous arsenic-tolerant bacteria to enhance arsenic phytoremediation by the autochthonous pseudometallophyte The first goal was to perform an initial analysis of the entire rhizosphere and endophytic bacterial communities of the above-named accumulator plant, including the cultivable bacterial species. 's microbiome was dominated by taxa related to , , and , especially the and genera. A total of 54 cultivable rhizobacteria and 41 root endophytes, mainly affiliated with the phyla , , , and , were isolated and characterized with respect to several potentially useful features for metal plant accumulation, such as the ability to promote plant growth, metal chelation, and/or mitigation of heavy-metal stress.

View Article and Find Full Text PDF

In Europe soil contamination has been recognized as a serious problem. The needs to remediate contaminated sites are not questionable, although the remediation actions are often hindered by their very high financial costs. On the other hand, the abandoned contaminated sites may have the potential for redevelopment and creating conditions appropriate for their productive reuse bringing social, economic and environmental benefits.

View Article and Find Full Text PDF

Trace element concentrations in the Roñanzas peat bog record reveal a contribution of natural processes but the influence of anthropogenic factors predominates in the last two millenniums, particularly aerosol deposition linked to mining and industrial activities in northern Spain. We observed that the Roñanzas record can be considered a preserved environment, suitable to search for local (<50 km), regional (50-150 km) and/or long-distance human activity fingerprinting, specifically that related to the deposition of heavy metals such as Pb, Zn and Hg. We also carried out a multivariate statistical study in order to clarify the geochemical behavior of trace and major elements.

View Article and Find Full Text PDF

Microbial metabolism in aromatic-contaminated environments has important ecological implications, and obtaining a complete understanding of this process remains a relevant goal. To understand the roles of biodiversity and aromatic-mediated genetic and metabolic rearrangements, we conducted 'OMIC' investigations in an anthropogenically influenced and polyaromatic hydrocarbon (PAH)-contaminated soil with (Nbs) or without (N) bio-stimulation with calcium ammonia nitrate, NH(4)NO(3) and KH(2)PO(4) and the commercial surfactant Iveysol, plus two naphthalene-enriched communities derived from both soils (CN2 and CN1, respectively). Using a metagenomic approach, a total of 52, 53, 14 and 12 distinct species (according to operational phylogenetic units (OPU) in our work equivalent to taxonomic species) were identified in the N, Nbs, CN1 and CN2 communities, respectively.

View Article and Find Full Text PDF

We present a rationale for the selection of a microbial consortia specifically adapted to degrade toxic components of oil refinery tank bottom sludge (OTBS). Sources such as polluted soils, petrochemical waste, sludge from refinery-wastewater plants, and others were used to obtain a collection of eight microorganisms, which were individually tested and characterized to analyze their degradative capabilities on different hydrocarbon families. After initial experiments using mixtures of these strains, we developed a consortium consisting of four microorganisms (three bacteria and one yeast) selected in the basis of their cometabolic effects, emulsification properties, colonization of oil components, and degradative capabilities.

View Article and Find Full Text PDF