Publications by authors named "Jose Luis Oliveira"

Single Sign-On (SSO) methods are the primary solution to authenticate users across multiple web systems. These mechanisms streamline the authentication procedure by avoiding duplicate developments of authentication modules for each application. Besides, these mechanisms also provide convenience to the end-user by keeping the user authenticated when switching between different contexts.

View Article and Find Full Text PDF

Deep learning techniques have recently yielded remarkable results across various fields. However, the quality of these results depends heavily on the quality and quantity of data used during the training phase. One common issue in multi-class and multi-label classification is class imbalance, where one or several classes make up a substantial portion of the total instances.

View Article and Find Full Text PDF

Background: Multimodal histology image registration is a process that transforms into a common coordinate system two or more images obtained from different microscopy modalities. The combination of information from various modalities can contribute to a comprehensive understanding of tissue specimens, aiding in more accurate diagnoses, and improved research insights. Multimodal image registration in histology samples presents a significant challenge due to the inherent differences in characteristics and the need for tailored optimization algorithms for each modality.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) represents a global health challenge, with limited therapies proven to enhance patient outcomes. This makes the elucidation of disease mechanisms and the identification of novel potential therapeutic targets a priority. Here, we performed RNA sequencing on ventricular myocardial biopsies from patients with HFpEF, prospecting to discover distinctive transcriptomic signatures.

View Article and Find Full Text PDF

A vast number of microarray datasets have been produced as a way to identify differentially expressed genes and gene expression signatures. A better understanding of these biological processes can help in the diagnosis and prognosis of diseases, as well as in the therapeutic response to drugs. However, most of the available datasets are composed of a reduced number of samples, leading to low statistical, predictive and generalization power.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD) levels are essential for the normal physiology of the cell and are strictly regulated to prevent pathological conditions. NAD functions as a coenzyme in redox reactions, as a substrate of regulatory proteins, and as a mediator of protein-protein interactions. The main objectives of this study were to identify the NAD-binding and NAD-interacting proteins, and to uncover novel proteins and functions that could be regulated by this metabolite.

View Article and Find Full Text PDF

Background: Secondary use of health data is a valuable source of knowledge that boosts observational studies, leading to important discoveries in the medical and biomedical sciences. The fundamental guiding principle for performing a successful observational study is the research question and the approach in advance of executing a study. However, in multi-centre studies, finding suitable datasets to support the study is challenging, time-consuming, and sometimes impossible without a deep understanding of each dataset.

View Article and Find Full Text PDF

Objectives: Existing individual-level human data cover large populations on many dimensions such as lifestyle, demography, laboratory measures, clinical parameters, etc. Recent years have seen large investments in data catalogues to FAIRify data descriptions to capitalise on this great promise, i.e.

View Article and Find Full Text PDF

Biomedical databases often have restricted access policies and governance rules. Thus, an adequate description of their content is essential for researchers who wish to use them for medical research. A strategy for publishing information without disclosing patient-level data is through database fingerprinting and aggregate characterisations.

View Article and Find Full Text PDF

At the end of the twentieth century, a new technology was developed that allowed an entire tissue section to be scanned on an objective slide. Originally called virtual microscopy, this technology is now known as Whole Slide Imaging (WSI). WSI presents new challenges for reading, visualization, storage, and analysis.

View Article and Find Full Text PDF

Anonymisation is currently one of the biggest challenges when sharing sensitive personal information. Its importance depends largely on the application domain, but when dealing with health information, this becomes a more serious issue. A simpler approach to avoid inadequate disclosure is to ensure that all data that can be associated directly with an individual is removed from the original dataset.

View Article and Find Full Text PDF

Many clinical studies are greatly dependent on an efficient identification of relevant datasets. This selection can be performed in existing health data catalogues, by searching for available metadata. The search process can be optimised through questioning-answering interfaces, to help researchers explore the available data present.

View Article and Find Full Text PDF

The nicotinate phosphoribosyltransferase () gene has gained relevance in the research of cancer therapeutic strategies due to its main role as a NAD biosynthetic enzyme. NAD metabolism is an attractive target for the development of anti-cancer therapies, given the high energy requirements of proliferating cancer cells and NAD-dependent signaling. A few studies have shown that expression varies in different cancer types, making it imperative to assess expression and functionality status prior to the application of therapeutic strategies targeting NAD.

View Article and Find Full Text PDF

Motivation: The process of placing new drugs into the market is time-consuming, expensive and complex. The application of computational methods for designing molecules with bespoke properties can contribute to saving resources throughout this process. However, the fundamental properties to be optimized are often not considered or conflicting with each other.

View Article and Find Full Text PDF

Background: The content of the clinical notes that have been continuously collected along patients' health history has the potential to provide relevant information about treatments and diseases, and to increase the value of structured data available in Electronic Health Records (EHR) databases. EHR databases are currently being used in observational studies which lead to important findings in medical and biomedical sciences. However, the information present in clinical notes is not being used in those studies, since the computational analysis of this unstructured data is much complex in comparison to structured data.

View Article and Find Full Text PDF

The process of refining the research question in a medical study depends greatly on the current background of the investigated subject. The information found in prior works can directly impact several stages of the study, namely the cohort definition stage. Besides previous published methods, researchers could also leverage on other materials, such as the output of cohort selection tools, to enrich and to accelerate their own work.

View Article and Find Full Text PDF

With the continuous increase in the use of social networks, social mining is steadily becoming a powerful component of digital phenotyping. In this paper we explore social mining for the classification of self-diagnosed depressed users of Reddit as social network. We conduct a cross evaluation study based on two public datasets in order to understand the impact of transfer learning when the data source is virtually the same.

View Article and Find Full Text PDF

Privacy issues limit the analysis and cross-exploration of most distributed and private biobanks, often raised by the multiple dimensionality and sensitivity of the data associated with access restrictions and policies. These characteristics prevent collaboration between entities, constituting a barrier to emergent personalized and public health challenges, namely the discovery of new druggable targets, identification of disease-causing genetic variants, or the study of rare diseases. In this paper, we propose a semi-automatic methodology for the analysis of distributed and private biobanks.

View Article and Find Full Text PDF

The Semantic Web and Linked Data concepts and technologies have empowered the scientific community with solutions to take full advantage of the increasingly available distributed and heterogeneous data in distinct silos. Additionally, FAIR Data principles established guidelines for data to be Findable, Accessible, Interoperable, and Reusable, and they are gaining traction in data stewardship. However, to explore their full potential, we must be able to transform legacy solutions smoothly into the FAIR Data ecosystem.

View Article and Find Full Text PDF

Background: Heart disease is the leading cause of death worldwide. Knowing a gene expression signature in heart disease can lead to the development of more efficient diagnosis and treatments that may prevent premature deaths. A large amount of microarray data is available in public repositories and can be used to identify differentially expressed genes.

View Article and Find Full Text PDF

This study investigated the feasibility of a postpartum depression predictor based on social media writings. The current broad use of social media networks generates a large amount of digital data, which, when coupled with artificial intelligence methods, have the potential to disclose significant health related insights. In this paper we explore the use of machine learning for prediction of postpartum depression on a corpus created from Reddit posts.

View Article and Find Full Text PDF

Aiming to better understand the genetic and environmental associations of Alzheimer's disease, many clinical trials and scientific studies have been conducted. However, these studies are often based on a small number of participants. To address this limitation, there is an increasing demand of multi-cohorts studies, which can provide higher statistical power and clinical evidence.

View Article and Find Full Text PDF

Background: Technological advancements, together with the decrease in both price and size of a large variety of sensors, has expanded the role and capabilities of regular mobile phones, turning them into powerful yet ubiquitous monitoring systems. At present, smartphones have the potential to continuously collect information about the users, monitor their activities and behaviors in real time, and provide them with feedback and recommendations.

Objective: This systematic review aimed to identify recent scientific studies that explored the passive use of smartphones for generating health- and well-being-related outcomes.

View Article and Find Full Text PDF

Background: Many healthcare databases have been routinely collected over the past decades, to support clinical practice and administrative services. However, their secondary use for research is often hindered by restricted governance rules. Furthermore, health research studies typically involve many participants with complementary roles and responsibilities which require proper process management.

View Article and Find Full Text PDF

Objective: The collaboration and knowledge exchange between researchers are often hindered by the nonexistence of accurate information about which databases may support research studies. Even though a considerable amount of patient health information does exist, it is usually distributed and hidden in many institutions. The goal of this project is to provide, for any research community, a holistic view of biomedical datasets of interests, from which researchers can explore several distinct levels of granularity.

View Article and Find Full Text PDF