Publications by authors named "Jose Luis Maldonado"

A layer of fluorinated reduced graphene oxide (FrGO), as an alternative hole transport (HTL) in organic solar cells (OSCs) based on a PBDB-T:ITIC active layer, is reported. OSC configuration is ITO/HTL/PBDB-T:ITIC/PFN/FM; FM is Field's metal, a eutectic alloy deposited at room atmosphere. PEDOT:PSS, FrGO/PEDOT:PSS, and FrGO are tested as HTLs; the average efficiencies of 8.

View Article and Find Full Text PDF

In this work, scanning probe microscopies (SPMs) are used for the analysis of PBDB-T, ITIC, and PBDB-T:ITIC layers of solar cells (OSCs). Scanning tunneling microscopy (STM) images of PBDB-T reveal that thin films (<1 nm) tend to form worm-like pattern (amorphous type) domains with an average chain-to-chain distance of 950 pm; likewise, STM images of ITIC show that side arms form chain-like patterns. STM images of PBDB-T:ITIC blend suggest why PBDB-T domains could facilitate charge dissociation.

View Article and Find Full Text PDF

carbo-Benzene is an aromatic molecule devised by inserting C units within each C-C bond of the benzene molecule. By integrating the corresponding carbo-quinoid core as bridging unit in a π-extended tetrathiafulvalene (exTTF), it is shown that a carbo-benzene ring can be reversibly formed by electrochemical reduction or oxidation. The so-called carbo-exTTF molecule was thus experimentally prepared and studied by UV-visible absorption spectroscopy and cyclic voltammetry, as well as by X-ray crystallography and by scanning tunneling microscopy (STM) on a surface of highly oriented pyrolytic graphite (HOPG).

View Article and Find Full Text PDF

Using scanning tunneling microscopy (STM) and spectroscopy (STS) at the liquid/solid interface, morphology evolution process and energetic level alignment of very thin solid films (thickness: <700 pm), of the low molecular weight molecule DRCN5T and DRCN5T:[70]PCBM blend are analyzed after applying thermal annealing at different temperatures. These films exhibit a worm-like pattern without thermal annealing (amorphous shape); however, after applying thermal annealing at 120 °C, the small molecule film domains crystallize verified by X-ray diffraction: structural geometry becomes a well-defined organized array. By using STS, the energy band diagrams of the semiconductor bulk heterojunction (blended film) at the donor-acceptor interface are determined; morphology and energy characteristics can be correlated with the organic solar cells (OSC) performance.

View Article and Find Full Text PDF

Herein, we report the synthesis of nontoxic pyrite iron sulfide (FeS) nanocrystals (NCs) using a two-pot method. Moreover, we study the influence of these NCs incorporated into the PTB7:PCBM active layer of bulk-heterojunction ternary organic photovoltaic (OPV) cells. The OPV devices are fabricated with the direct configuration glass/ITO/PEDOT:PSS/PTB7:PCBM:FeS/PFN/FM.

View Article and Find Full Text PDF

Herein, three novel Pt(ii) complexes with formula [-Pt(Br-PyBenz-X)(Cl)(DMSO)] (1-3) having Br-pyridylbenz-(imida, oxa or othia)-zole (L) derivatives as potential bidentate ligands, under an unusual κ-N-coordination mode are reported. All compounds were obtained straightforwardly reaction of corresponding L and [Pt(Cl)(DMSO)] (DMSO = dimethyl sulfoxide), at 100 °C in acetonitrile, respectively. 1-3 complexes were characterized by analytical and spectroscopic data: melting point, FT-IR, Raman, UV/Vis and NMR experiments.

View Article and Find Full Text PDF

Four low molecular weight compounds-three of them new, two of them with carbazole (Cz) as functional group and the other two with thienopyrroledione (TPD) group-were used as emitting materials in organic light emitting diodes (OLEDs). Devices were fabricated with the configuration ITO/PEDOT:PSS/emitting material/LiF/Al. The hole injector layer (HIL) and the emitting sheet were deposited by spin coating; LiF and Al were thermally evaporated.

View Article and Find Full Text PDF

In this work, microwave synthesis, chemical, optical and electrochemical characterization of three small organic molecules, , and with donor-acceptor structure and their use in organic photovoltaic cells are reported. For the synthesis, 5-(2-ethylhexyl)-4-thieno[3,4-]pyrrole-4,6(5)-dione was used as electron withdrawing fragment while the triphenylamine was used as electron donating fragment. Molecular electronic geometry and electronic distribution density were established by density functional theory (DFT) calculations and confirmed by optical and chemical characterization.

View Article and Find Full Text PDF

In this Research Article, the effect of two techniques for top-electrode deposition in organic photovoltaics (OPVs) cells with the configuration ITO/PEDOT:PSS/PTB7-Th:PCBM/PFN/top-electrode is analyzed. One deposition was made by evaporation under high vacuum, meanwhile the other was carried out at normal room atmosphere; for the former, a double layer of Ca and the eutectic alloy Field's metal (FM) was thermally evaporated, while for the latter FM was deposited just by melting and dropping it on top of the delimited active area at temperatures about 90 °C. The average short-circuit photocurrent density, open circuit voltage and fill factor for devices with either Ca/FM (evaporated) or FM (by dripping) cathode, were very similar: around 13.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a novel fluorene cross-conjugated polymer which has excellent solubility and fluorescence properties, achieving a high quantum yield.
  • The polymer was effectively used as an active layer in polymer light-emitting diodes (PLEDs) and as a laser gain medium, demonstrating enhanced performance in both applications.
  • PLEDs utilizing this polymer achieved a maximum luminous efficiency of 40 cd/A and a notable lasing threshold of about 75 μJ, indicating strong potential in optoelectronic applications.
View Article and Find Full Text PDF

The synthesis, crystal and electronic structures, and one- and two-photon absorption properties of two quadrupolar fluorenyl-substituted tetraphenyl carbo-benzenes are described. These all-hydrocarbon chromophores, differing in the nature of the linkers between the fluorenyl substituents and the carbo-benzene core (C-C bonds for 3 a, C-C=C-C expanders for 3 b), exhibit quasi-superimposable one-photon absorption (1PA) spectra but different two-photon absorption (2PA) cross-sections σ2PA. Z-scan measurements (under NIR femtosecond excitation) indeed showed that the C≡C expansion results in an approximately twofold increase in the σ2PA value, from 336 to 656 GM (1 GM = 10(-50) cm(4) s molecule(-1) photon(-1)) at λ = 800 nm.

View Article and Find Full Text PDF

Our group previously reported the synthesis of four polythiophene derivatives (P1-P4) used for solar cells. The cells were prepared under room conditions by spin coating, leading to low efficiencies. However, after the addition of 6-nitro-3-(E)-3-(4-dimethylaminophenyl)allylidene)-2,3-dihydrobenzo[d]-[1,3,2] oxazaborole (M1) to their active layers, the efficiencies of the cells showed approximately a two-fold improvement.

View Article and Find Full Text PDF

In this work the two-photon activity of nanoparticles obtained from a fluorene monomer (M1) and its cross-conjugated polymer (P1) is reported. Aqueous suspensions of M1 and P1 nanoparticles prepared through the reprecipitation method exhibited maximum two-photon absorption (TPA) cross-sections of 84 and 9860 GM (1 GM = 10(-50) cm(4) s) at 740 nm, respectively, and a fluorescence quantum yield of ~1. Such a two-photon activity was practically equal with respect to that for molecular solutions of M1 and P1.

View Article and Find Full Text PDF

ITO-free polymer solar cells with efficiencies as high as 6.6% and 5.8% are fabricated on glass and polyethylene naphthalate (PEN) by using TeO(2) to enhance the in-coupling of light in an Ag-Ag microcavity.

View Article and Find Full Text PDF
Article Synopsis
  • Stereoregular tetraphenylethene derivatives (Z)-o-BCaPTPE and (Z)-o-BTPATPE, known for their unique conformations and strong light-emitting properties, are created through a McMurry reaction.
  • Both compounds demonstrate impressive mobility for both holes and electrons.
  • Organic light-emitting diodes (OLEDs) utilizing these derivatives as both the emitting and electron-transport layers achieve high efficiency levels.
View Article and Find Full Text PDF

Macroscopic single crystals of (E)-5-(diethylamino)-2-((3,5-dinitrophenylimino)methyl)phenol (DNP) were obtained from slow cooling of chloroform or dichlorometane saturated solutions at controlled temperature. X-ray diffraction analysis showed that this compound crystallizes in a noncentrosymmetric space group (P2(1)2(1)2(1)). Thermal analysis was performed and indicated that the crystals are stable until 260 °C.

View Article and Find Full Text PDF

Triphenylamine-functionalized tetraphenylethene shows aggregation-induced emission feature with unity solid-state fluorescence efficiency. Its amorphous film can function in a p-type FET device with field effect mobility up to 2.6 × 10(-3) cm(2)/Vs.

View Article and Find Full Text PDF

We synthesized three novel highly fluorescent compounds, 2-(2'-pyridyl)-3-(N-ethyl-(3'-carbazolyl))acrylonitrile, 2-(3"-pyridyl)-3-(N-ethyl-(3'-carbazolyl))acrylonitrile, and 2-(4-pyridyl)-3-(N-ethyl-(3'-carbazolyl))acrylonitrile by Knoevenagel condensation. The first two were synthesized without solvent in the presence of piperidine as a catalyst; the third was synthesized without a catalyst and with N,N-dimethylformamide as a solvent. In solution, the molar absorption coefficients showed absorptions at 380, 378, and 396 nm, respectively; in solid state, absorptions were at 398, 390, and 442 nm, respectively.

View Article and Find Full Text PDF

We report a series of stiff dendrimers (referred to as T1, T2, T3, and T4) that have both gigantic two-photon absorption (TPA) cross sections up to 25,000 GM and strong two-photon excited fluorescence (TPEF) with fluorescence quantum yield of ∼0.5. The large TPA cross sections and high quantum yields of these dendrimers are directly related to their geometrical structures, where the polycyclic aromatic pyrene is chosen as the chromophoric core because of its planar and highly π-conjugated structure, fluorene moieties as dendrons extend the conjugation length through the planar structure, and carbazole moieties are modified at three-, six-, and nine-positions as electron donor.

View Article and Find Full Text PDF