Fibrin is a promising natural polymer that is widely used for diverse applications, such as hemostatic glue, carrier for drug and cell delivery, and matrix for tissue engineering. Despite the significant advances in the use of fibrin for bioengineering and biomedical applications, some of its characteristics must be improved for suitability for general use. For example, fibrin hydrogels tend to shrink and degrade quickly after polymerization, particularly when they contain embedded cells.
View Article and Find Full Text PDFCellular spheroids have been described as an appropriate culture system to restore human follicle dermal papilla cells (hFDPc) intrinsic properties; however, they show a low and variable efficiency to promote complete hair follicle formation in in vivo experiments. In this work, a conscientious analysis revealed a 25% cell viability in the surface of the dermal papilla spheroid (DPS) for all culture conditions, questioning whether it is an appropriate culture system for hFDPc. To overcome this problem, we propose the use of human blood plasma for the generation of fibrin microgels (FM) with encapsulated hFDPc to restore its inductive signature, either in the presence or in the absence of blood platelets.
View Article and Find Full Text PDFCell spheroids have recently emerged as an effective tool to recapitulate native microenvironments of living organisms in anscenario, increasing the reliability of the results obtained and broadening their applications in regenerative medicine, cancer research, disease modeling and drug screening. In this study the generation of spheroids containing primary human dermal fibroblasts was approached using the two-widely employed methods: hanging-drop and U-shape low adhesion plate (LA-plate). Moreover, extrusion-based three-dimensional (3D) bioprinting was introduced to achieve a standardized and scalable production of cell spheroids, decreasing considerably the possibilities of human error.
View Article and Find Full Text PDFFibrin hydrogels are one of the most popular scaffolds used in tissue engineering due to their excellent biological properties. Special attention should be paid to the use of human plasma-derived fibrin hydrogels as a 3D scaffold in the production of autologous skin grafts, skeletal muscle regeneration and bone tissue repair. However, mechanical weakness and rapid degradation, which causes plasma-derived fibrin matrices to shrink significantly, prompted us to improve their stability.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2021
Human plasma-derived bilayered skin substitutes have been successfully used by our group in different skin tissue engineering applications. However, several issues associated with their poor mechanical properties were observed, and they often resulted in rapid contraction and degradation. In this sense, hydrogels composed of plasma-derived fibrin and thiolated-hyaluronic acid (HA-SH, 0.
View Article and Find Full Text PDFDermo-epidermal equivalents based on plasma-derived fibrin hydrogels have been extensively studied for skin engineering. However, they showed rapid degradation and contraction over time and low mechanical properties which limit their reproducibility and lifespan. In order to achieve better mechanical properties, elasticity and biological properties, we incorporated a elastin-like recombinamer (ELR) network, based on two types of ELR, one modified with azide (SKS-N) and other with cyclooctyne (SKS-Cyclo) chemical groups at molar ratio 1:1 at three different SKS (serine-lysine-serine sequence) concentrations (1, 3, and 5 wt.
View Article and Find Full Text PDFHuman plasma-derived bilayered skin substitutes were successfully used by our group to produce human-based in vitro skin models for toxicity, cosmetic, and pharmaceutical testing. However, mechanical weakness, which causes the plasma-derived fibrin matrices to contract significantly, led us to attempt to improve their stability. In this work, we studied whether an increase in fibrin concentration from 1.
View Article and Find Full Text PDFFrom electronic devices to large-area electronics, from individual cells to skin substitutes, printing techniques are providing compelling applications in wide-ranging fields. Research has thus fueled the vision of a hybrid, printing platform to fabricate sensors/electronics and living engineered tissues simultaneously. Following this interest, we have fabricated interdigitated-electrode sensors (IDEs) by inkjet printing to monitor epithelial cell cultures.
View Article and Find Full Text PDFIt is well-known that fibroblasts play a fundamental role in the contraction of collagen and fibrin hydrogels when used in the production of in vitro bilayered skin substitutes. However, little is known about the contribution of other factors, such as the hydrogel matrix itself, on this contraction. In this work, we studied the contraction of plasma-derived fibrin hydrogels at different temperatures (4, 23, and 37°C) in an isotonic buffer (phosphate-buffered saline).
View Article and Find Full Text PDFSensors (Basel)
April 2020
Cell functions and behavior are regulated not only by soluble (biochemical) signals but also by biophysical and mechanical cues within the cells' microenvironment. Thanks to the dynamical and complex cell machinery, cells are genuine and effective mechanotransducers translating mechanical stimuli into biochemical signals, which eventually alter multiple aspects of their own homeostasis. Given the dominant and classic biochemical-based views to explain biological processes, it could be challenging to elucidate the key role that mechanical parameters such as vibration, frequency, and force play in biology.
View Article and Find Full Text PDFPsoriasis and atopic dermatitis are chronic and relapsing inflammatory diseases of the skin affecting a large number of patients worldwide. Psoriasis is characterized by a T helper type 1 and/or T helper type 17 immunological response, whereas acute atopic dermatitis lesions exhibit T helper type 2-dominant inflammation. Current single gene and signaling pathways-based models of inflammatory skin diseases are incomplete.
View Article and Find Full Text PDFEpidermolysis bullosa with pyloric atresia (EB-PA) is a rare autosomal recessive hereditary disease with a variable prognosis from lethal to very mild. EB-PA is classified into Simplex form (EBS-PA: OMIM #612138) and Junctional form (JEB-PA: OMIM #226730), and it is caused by mutations in ITGA6, ITGB4 and PLEC genes. We report the analysis of six patients with EB-PA, including two dizygotic twins.
View Article and Find Full Text PDFIn this study the first results on evaluation and assessment of grafted bioengineered skin substitutes using an optical Diffuse Reflectance Spectroscopy (DRS) system with a remote optical probe are shown. The proposed system is able to detect early vascularization of skin substitutes expressing the Vascular Endothelial Growth Factor (VEGF) protein compared to normal grafts, even though devitalized skin is used to protect the grafts. Given the particularities of the biological problem, data analysis is performed using two Blind Signal Separation (BSS) methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA).
View Article and Find Full Text PDFOver the past few years, whole skin xenotransplantation models that mimic different aspects of psoriasis have become available. However, these models are strongly constrained by the lack of skin donor availability and homogeneity. We present in this study a bioengineering-based skin-humanized mouse model for psoriasis, either in an autologous version using samples derived from psoriatic patients or, more importantly, in an allogeneic context, starting from skin biopsies and blood samples from unrelated healthy donors.
View Article and Find Full Text PDFIn vivo studies of UVB effects on human skin are precluded by ethical and technical arguments on volunteers and inconceivable in cancer-prone patients such as those affected with Xeroderma Pigmentosum (XP). Establishing reliable models to address mechanistic and therapeutic matters thus remains a challenge. Here we have used the skin-humanized mouse system that circumvents most current model constraints.
View Article and Find Full Text PDFThe Src family kinases (SFKs) are believed to play critical roles in malignant transformation, as well as in growth, invasion and dissemination of neoplastic tissue. Inhibition of SFK-mediated signal transduction and activation of downstream targets inhibits tumor progression. To determine whether constitutive activity of SFK per se is sufficient to induce tumorigenesis in vivo, we have generated a mouse model with a keratinocyte-restricted deletion of the SFK-negative regulator csk (Csk-K5 mice).
View Article and Find Full Text PDFIntroduction: An artificial complete skin (dermis and epidermis) model has been developed in the Tissue engineering unit of the Centro Comunitario de Sangre y Tejidos del Principado de Asturias (CCST) and CIEMAT. This engineered skin has been employed for the treatment of severe epithelial injuries. In this paper, the clinical results obtained with this engineered skin during the last 18 months were evaluated.
View Article and Find Full Text PDFCutaneous wound-healing disorders are a major health problem that requires the development of innovative treatments. Whithin this context, the search for reliable human wound-healing models that allow us to address both mechanistic and therapeutic matters is warranted. In this study, we have developed a novel invivo wound-healing model in a genetically modified human context.
View Article and Find Full Text PDFInfection represents a major associated problem in severely burned patients, as it causes skin graft failure and increases the risk of mortality. Topical and systemic antibiotic treatment is limited by the appearance of resistant bacterial strains. Antimicrobial peptides (AMPs) are gene-encoded "natural antibiotics" that form part of the innate mechanism of defense and may be active against such antibiotic-resistant microorganisms.
View Article and Find Full Text PDFThe retinoblastoma gene product, pRb, plays a crucial role in cell cycle regulation, differentiation and inhibition of oncogenic transformation. pRb and its closely related family members p107 and p130 perform exclusive and overlapping functions during mouse development. The embryonic lethality of Rb-null animals restricts the phenotypic analysis of these mice to mid-gestation embryogenesis.
View Article and Find Full Text PDFThe epidermis, like other rapidly renewing tissues, relies on a stem cell compartment to undergo constant regeneration. In order to develop realistic and long-lasting therapeutic approaches for some skin disorders, gene transfer to these critical cells must be obtained. While efficient retroviral ex vivo targeting and transgene integration in human keratinocytes is tightly dependent on proliferation, transferring genetic information to quiescent cells in culture also presents advantages, including the possibility of targeting putative dormant epidermal stem cells.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) plays a critical role in epidermal biology. Abnormal EGFR function has been described in epithelial tumors including those induced by two-stage chemical carcinogenesis in mouse skin. A large body of evidence indicates that in this model, activation of Ha-ras is the critical event in papilloma formation, a process that involves epidermal proliferation and stroma remodeling, which includes angiogenesis.
View Article and Find Full Text PDFAlthough skin is perhaps the most accessible of all somatic tissues for therapeutic gene transfer, it is a challenging site when attempting gene delivery. In addition to the transience of gene expression, important obstacles to cutaneous gene therapy have included the inability to sustain gene expression in a large proportion of keratinocytes within a given skin compartment. In this study, we have developed a novel experimental strategy that allows long-term regeneration of entirely genetically engineered human skin on the backs of NOD/SCID mice.
View Article and Find Full Text PDF