In-fiber opto-mechanics based on forward Brillouin scattering has received increasing attention because it enables sensing the surrounding of the optical fiber. Optical fiber transverse acoustic resonances are sensitive to both the inner properties of the optical fiber and the external medium. A particularly efficient pump and probe technique-assisted by a fiber grating-can be exploited for the development of point sensors of only a few centimeters in length.
View Article and Find Full Text PDFThe nanostructuration of biolayers has become a paradigm for exploiting nanoscopic light-matter phenomena for biosensing, among other biomedical purposes. In this work, we present a photopatterning method to create periodic structures of biomacromolecules based on a local and periodic mild denaturation of protein biolayers mediated by UV-laser irradiation. These nanostructures are constituted by a periodic modulation of the protein activity, so they are free of topographic and compositional changes along the pattern.
View Article and Find Full Text PDFIn the present paper, we show the experimental measurement of the growth of a microbubble created on the tip of a single mode optical fiber, in which zinc nanoparticles were photodeposited on its core by using a single laser source to carry out both the generation of the microbubble by photothermal effect and the monitoring of the microbubble diameter. The photodeposition technique, as well as the formation of the microbubble, was carried out by using a single-mode pigtailed laser diode with emission at a wavelength of 658 nm. The microbubble's growth was analyzed in the time domain by the analysis of the Fabry-Perot cavity, whose diameter was calculated with the number of interference fringes visualized in an oscilloscope.
View Article and Find Full Text PDFWe report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium.
View Article and Find Full Text PDFObjectives: gastric bypass is the surgical procedure that is carried out most frequently in the treatment of morbid obesity. Stenosis of the gastro-jejunal anastomosis is a relatively frequent complication that requires endoscopic management. However, the optimal dilation technique is yet to be determined.
View Article and Find Full Text PDFWe present a new application of the acousto-optic superlattice modulation of a fiber Bragg grating based on the dynamic phase and group delay properties of this fiber-optic component. We demonstrate a tunable photonic true-time-delay line based on the group delay change of the light reflected from the grating sidebands. The delay is electrically tuned by adjusting the voltage applied to a piezoelectric transducer that generates the acoustic wave propagating along the grating.
View Article and Find Full Text PDFWe present a temperature sensor based on two chirped gratings made in optical fibers tapered by fusion. One of the gratings has a metallic shielding and acts as sensor element, whereas the second grating provides a reference signal. The sensor is interrogated by measuring the power reflected by the two gratings, and the system has an accuracy of 0.
View Article and Find Full Text PDFA compact and low-cost device for monitoring the peak wavelength of single-peak spectral distributions is presented. The system is based on the transmission properties of a fiber Bragg grating when its period is modulated. Different types of optical signal, such as the emission of distributed-feedback lasers and the reflection of a broadband optical source produced by fiber gratings used in sensor systems, can be measured with this device.
View Article and Find Full Text PDF