Introduction: We have acquired significant knowledge regarding the pathogenesis of severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2). However, the underlying mechanisms responsible for disease recovery still need to be fully understood.
Methods: To gain insights into critical immune markers involved in COVID-19 etiopathogenesis, we studied the evolution of the immune profile of peripheral blood samples from patients who had recovered from COVID-19 and compared them to subjects with severe acute respiratory illness but negative for SARS-CoV-2 detection (controls).
The trapping of Poly-ADP-ribose polymerase (PARP) on DNA caused by PARP inhibitors (PARPi) triggers acute DNA replication stress and synthetic lethality (SL) in BRCA2-deficient cells. Hence, DNA damage is accepted as a prerequisite for SL in BRCA2-deficient cells. In contrast, here we show that inhibiting ROCK in BRCA2-deficient cells triggers SL independently from acute replication stress.
View Article and Find Full Text PDFBRCA2 is a well-established cancer driver in several human malignancies. While the remarkable success of PARP inhibitors proved the clinical potential of targeting BRCA deficiencies, the emergence of resistance mechanisms underscores the importance of seeking novel Synthetic Lethal (SL) targets for future drug development efforts. In this work, we performed a BRCA2-centric SL screen with a collection of plant-derived compounds from South America.
View Article and Find Full Text PDFBackground: The current COVID-19 pandemic has overloaded the diagnostic capacity of laboratories by the gold standard method rRT-PCR. This disease has a high spread rate and almost a quarter of infected individuals never develop symptoms. In this scenario, active surveillance is crucial to stop the virus propagation.
View Article and Find Full Text PDFSeveral plants from South America show strong antitumoral properties based on anti-proliferative and/or pro-apoptotic activities. In this work we aimed to identify selective cytotoxic compounds that target BRCA1-deficient cancer cells by Synthetic Lethality (SL) induction. Using a high-throughput screening technology developed in our laboratory, we analyzed a collection of extracts from 46 native plant species from Argentina using a wide dose-response scheme.
View Article and Find Full Text PDFTo find alternative compounds against methicillin-resistant (MRSA) and methicillin-susceptible (MSSA), novel derivatives from dehydroabietic acid were synthesized. Compound was the most effective against 15 MRSA and 11 MSSA with minimum inhibitory concentration values ranging from 3.9 to 15.
View Article and Find Full Text PDFZEB1 is a master regulator of the Epithelial-to-Mesenchymal Transition (EMT) program. While extensive evidence confirmed the importance of ZEB1 as an EMT transcription factor that promotes tumor invasiveness and metastasis, little is known about its regulation. In this work, we screened for potential regulatory links between ZEB1 and multiple cellular kinases.
View Article and Find Full Text PDFKrüppel-like factor 6 (KLF6) is a transcription factor involved in the regulation of several cellular processes. Regarding its role in tumorigenesis, KLF6 is considered a tumor suppressor. Numerous reports demonstrate its frequent genomic loss or down-regulation, implying a functional inactivation in a broad range of human cancers.
View Article and Find Full Text PDFPurpose: BRCA1 and BRCA2 deficiencies are widespread drivers of human cancers that await the development of targeted therapies. We aimed to identify novel synthetic lethal relationships with therapeutic potential using BRCA-deficient isogenic backgrounds.
Experimental Design: We developed a phenotypic screening technology to simultaneously search for synthetic lethal (SL) interactions in BRCA1- and BRCA2-deficient contexts.
Translesion DNA synthesis (TLS) and homologous recombination (HR) cooperate during S-phase to safeguard replication forks integrity. Thus, the inhibition of TLS becomes a promising point of therapeutic intervention in HR-deficient cancers, where TLS impairment might trigger synthetic lethality (SL). The main limitation to test this hypothesis is the current lack of selective pharmacological inhibitors of TLS.
View Article and Find Full Text PDFThe mechanisms that link inflammatory responses to cancer development remain a subject of intense investigation, emphasizing the need to better understand the cellular and molecular pathways that create a tumor promoting microenvironment. The myeloid differentiation primary response protein MyD88 acts as a main adaptor molecule for the signaling cascades initiated from Toll-like receptors (TLRs) and the interleukin 1 receptor (IL-1R). MyD88 has been shown to contribute to tumorigenesis in many inflammation-associated cancer models.
View Article and Find Full Text PDFThis work examines the antitumor activity of an isomeric mixture (1), composed of the limonoids meliartenin and its interchangeable isomer 12-hydroxyamoorastatin. The results obtained showed that 1 displayed outstanding cytotoxic activity against CCRF-CEM, K562, A549 and HCT116 cells, with a highly selective effect on the latter, with an IC value of 0.2 μM.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
January 2016
The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2',4'-dihydroxychalcone (1), isoliquiritigenin (2), pinocembrin (3), 7-hydroxyflavanone (4), and 7,4'-dihydroxy-3'-methoxyflavanone (5). Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC) values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively.
View Article and Find Full Text PDFFanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown.
View Article and Find Full Text PDFNitric oxide (NO) is a ubiquitous signaling molecule involved in a wide variety of cellular physiological processes. In thyroid cells, NO-synthase III-endogenously produced NO reduces TSH-stimulated thyroid-specific gene expression, suggesting a potential autocrine role of NO in modulating thyroid function. Further studies indicate that NO induces thyroid dedifferentiation, because NO donors repress TSH-stimulated iodide (I(-)) uptake.
View Article and Find Full Text PDFKLF6 is a member of the Krüppel-like factor family of transcription factors, with diverse roles in the regulation of cell physiology, including proliferation, signal transduction, and apoptosis. Mutations or down-regulation of KLF6 have been described in several human cancers. In this work, we found that KLF6-knockdown resulted in the formation of transformed foci and allowed the spontaneous conversion of NIH3T3 cells to a tumorigenic state.
View Article and Find Full Text PDFAn essential role for the Krüppel-like transcription factor family has been determined in the regulation of remarkable processes including cell proliferation, differentiation, signal transduction, oncogenesis, and cell death. A member of this group, Krüppel-like factor 6 (KLF6), identified on the basis of its ability to regulate a group of genes belonging to the carcinoembryonic antigen gene family, has been involved in human carcinogenesis. Early studies proposed a tumor suppressor function for KLF6 because of its ability to reduce cell proliferation through several biochemical mechanisms including regulation of cell cycle components, oncogene products, and apoptosis.
View Article and Find Full Text PDFBackground: In this report, we explored the role of PKCalpha and PKCe as mediators of phorbol 12-myristate13-acetate (PMA)-induced proliferation in pituitary tumor GH3B6 cells, and determined if the ERK1/2 and Akt pathways were activated.
Methods: The GH3B6 cell proliferation was estimated by BrdU incorporation and the cell cycle progression by flow cytometric cell cycle analysis. We determined the expression of PKCalpha and PKCe in membrane and cytosolic fractions by western blotting.
The multixenobiotic resistance phenomenon (MXR) related to the P-glycoprotein multidrug transporter protein (P-gp) has been identified and characterized in several aquatic organisms. In the present work, we prove the presence of a P-gp in liver, gills and brain of Jenynsia multidentata by Western Blot and RT-PCR. A 170 kDa protein has been found in liver and gills while in brain a approximately 80 kDa protein has been detected.
View Article and Find Full Text PDFEpidemiological surveillance for community-associated methicillin-resistant Staphylococcus aureus revealed prevalences of 33% and 13% in pediatric and adult patients, respectively, in Cordoba, Argentina, in 2005. This study describes for the first time the emergence and dissemination of the sequence type 5 (ST5) lineage as the most prevalent clone (89%) (pulsed-field gel electrophoresis type I-ST5-staphylococcal cassette chromosome type IVa-spa type 311) harboring the Panton-Valentine leukocidin and enterotoxin A genes.
View Article and Find Full Text PDFCholera toxin (CT) gene-negative Vibrio cholerae non-O1, non-O139 strains may cause severe diarrhea though their pathogenic mechanism remains unclear. V. cholerae cytolysin (VCC) is a pore-forming exotoxin encoded in the hlyA gene of V.
View Article and Find Full Text PDFAutophagy is the unique, regulated mechanism for the degradation of organelles. This intracellular process acts as a prosurvival pathway during cell starvation or stress and is also involved in cellular response against specific bacterial infections. Vibrio cholerae is a noninvasive intestinal pathogen that has been studied extensively as the causative agent of the human disease cholera.
View Article and Find Full Text PDFPregnancy-specific glycoproteins (PSGs) are major placental proteins thought to be essential for the maintenance of gestation. Little is known about the regulation of expression of the 11 genes encoding these proteins. It was previously demonstrated that Krüppel-like factor 6 (KLF6) and specific-protein 1 (Sp1) bind to conserved sequence within the PSG-5 gene promoter.
View Article and Find Full Text PDF