Publications by authors named "Jose Luis Aparicio-Collado"

Electroactive composite materials are very promising for musculoskeletal tissue engineering because they can be applied in combination with electrostimulation. In this context, novel graphene-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polyvinyl alcohol (PHBV/PVA) semi-interpenetrated networks (semi-IPN) hydrogels were engineered with low amounts of graphene (G) nanosheets dispersed within the polymer matrix to endow them with electroactive properties. The nanohybrid hydrogels, obtained by applying a hybrid solvent casting-freeze-drying method, show an interconnected porous structure and a high water-absorption capacity (swelling degree > 1200%).

View Article and Find Full Text PDF

A new strategy based on the combination of electrically conductive polymer nanocomposites and extracellular Zn ions as a myogenic factor was developed to assess its ability to synergically stimulate myogenic cell response. The conductive nanocomposite was prepared with a polymeric matrix and a small amount of graphene (G) nanosheets (0.7% /) as conductive filler to produce an electrically conductive surface.

View Article and Find Full Text PDF

A new biodegradable semi-interpenetrated polymer network (semi-IPN) of two US Food and Drug Administration approved materials, poly(3-hydroxybutyrate-co-3-valerate) (PHBV) and calcium alginate (CA) was engineered to provide an alternative strategy to enhance the poor adhesion properties of CA. The synthesis procedure allows the additional incorporation of 10 % w/w of graphene nanoplatelets (GNPs), which have no cytotoxic effect on human keratinocytes. This quantity of multilayer graphene provides superior antiviral activity to the novel semi-IPN against a surrogate virus of SARS-CoV-2.

View Article and Find Full Text PDF

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a microbial biodegradable polymer with a broad range of promising industrial applications. The effect of incorporation of low amounts (1% ) of carbon nanomaterials (CBNs) such as 1D carbon nanofibers (CNFs) or 2D graphene oxide (GO) nanosheets into the PHBV polymer matrix affects its degradation properties, as it is reported here for the first time. The study was performed in simulated gut conditions using two different media: an acidic aqueous medium (pH 6) and Gifu anaerobic medium.

View Article and Find Full Text PDF
Article Synopsis
  • The COVID-19 pandemic has created a pressing need for new antimicrobial solutions to combat the SARS-CoV-2 virus and address the rising antibiotic resistance seen with Gram-positive bacteria contributing to severe pneumonia.
  • Researchers developed non-woven fabrics with antimicrobial coatings from cranberry extracts that can effectively inactivate SARS-CoV-2 and multidrug-resistant bacteria in a short time frame.
  • The study includes thorough testing of the materials' properties and confirms their non-toxicity, offering a promising avenue for creating safer, natural, and biodegradable infection prevention clothing in response to the ongoing pandemic and growing microbial resistance issues.
View Article and Find Full Text PDF

This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity.

View Article and Find Full Text PDF