Publications by authors named "Jose Lopez-Dominguez"

Background: Aging is associated with multiple neurodegenerative conditions that severely limit quality of life and can shorten lifespan. Studies in rodents indicate that in addition to extending lifespan, the ketogenic diet (KD) improves cognitive function in aged animals, yet long term adherence to KD in Humans is poor.

Objectives: To broadly investigate what mechanisms might be activated in the brain in response to ketogenic diet.

View Article and Find Full Text PDF

Chemotherapy often generates intratumoral senescent cancer cells that strongly modify the tumor microenvironment, favoring immunosuppression and tumor growth. We discovered, through an unbiased proteomics screen, that the immune checkpoint inhibitor programmed cell death 1 ligand 2 (PD-L2) is highly upregulated upon induction of senescence in different types of cancer cells. PD-L2 is not required for cells to undergo senescence, but it is critical for senescent cells to evade the immune system and persist intratumorally.

View Article and Find Full Text PDF

Cell senescence has recently emerged as a potentially relevant pathogenic mechanism in fibrosing interstitial lung diseases (f-ILDs), particularly in idiopathic pulmonary fibrosis. We hypothesized that senescent human fibroblasts may suffice to trigger a progressive fibrogenic reaction in the lung. To address this, senescent human lung fibroblasts, or their secretome (SASP), were instilled into the lungs of immunodeficient mice.

View Article and Find Full Text PDF

Unlabelled: Cellular senescence is a stress response that activates innate immune cells, but little is known about its interplay with the adaptive immune system. Here, we show that senescent cells combine several features that render them highly efficient in activating dendritic cells (DC) and antigen-specific CD8 T cells. This includes the release of alarmins, activation of IFN signaling, enhanced MHC class I machinery, and presentation of senescence-associated self-peptides that can activate CD8 T cells.

View Article and Find Full Text PDF

Senescence occurs in response to a number of damaging stimuli to limit oncogenic transformation and cancer development. As no single, universal senescence marker has been discovered, the confident classification of senescence induction requires the parallel assessment of a series of hallmarks. Therefore, there is a growing need for "first-pass" tools of senescence identification to streamline experimental workflows and complement conventional markers.

View Article and Find Full Text PDF

The underlying causes of aging remain elusive, but may include decreased intestinal homeostasis followed by disruption of the intestinal barrier, which can be mimicked by nutrient-rich diets. S3QELs are small-molecule suppressors of site III electron leak; they suppress superoxide generation at complex III of the mitochondrial electron transport chain without inhibiting oxidative phosphorylation. Here we show that feeding different S3QELs to Drosophila on a high-nutrient diet protects against greater intestinal permeability, greater enterocyte apoptotic cell number, and shorter median lifespan.

View Article and Find Full Text PDF

Cellular senescence is a cell fate response characterized by a permanent cell cycle arrest driven primarily the by cell cycle inhibitor and tumor suppressor proteins p16 and p21. In mice, the p21 encoding locus, , is known to generate two transcripts that produce identical proteins, but one of these transcript variants is poorly characterized. We show that the transcript variant 2, but not the better-studied variant 1, is selectively elevated during natural aging across multiple mouse tissues.

View Article and Find Full Text PDF

Cellular senescence is a stress or damage response that causes a permanent proliferative arrest and secretion of numerous factors with potent biological activities. This senescence-associated secretory phenotype (SASP) has been characterized largely for secreted proteins that participate in embryogenesis, wound healing, inflammation, and many age-related pathologies. By contrast, lipid components of the SASP are understudied.

View Article and Find Full Text PDF

Declines in mitochondrial mass are thought to be a hallmark of mammalian aging, and a ketogenic diet (KD) may prevent the age-related decreases in mitochondrial content. The objective of this study was to investigate the impact of a KD on markers of mitochondrial mass. Mice were fed an isocaloric control diet (CD) or KD from 12 months of age.

View Article and Find Full Text PDF

The causes of the decline in skeletal muscle mass and function with age, known as sarcopenia, are poorly understood. Nutrition (calorie restriction) interventions impact many cellular processes and increase lifespan and preserve muscle mass and function with age. As we previously observed an increase in life span and muscle function in aging mice on a ketogenic diet (KD), we aimed to investigate the effect of a KD on the maintenance of skeletal muscle mass with age and the potential molecular mechanisms of this action.

View Article and Find Full Text PDF

Cellular senescence is a state of stable cell cycle arrest that can negatively affect the regenerative capacities of tissues and can contribute to inflammation and the progression of various aging-related diseases. Advances in the detection of cellular senescence are still crucial to monitor the action of senolytic drugs and to assess the early onset or accumulation of senescent cells. Here, we describe a naphthalimide-styrene-based probe () for the detection of cellular senescence both and .

View Article and Find Full Text PDF

Declining tissue nicotinamide adenine dinucleotide (NAD) levels are linked to ageing and its associated diseases. However, the mechanism for this decline is unclear. Here, we show that pro-inflammatory M1-like macrophages, but not naive or M2 macrophages, accumulate in metabolic tissues, including visceral white adipose tissue and liver, during ageing and acute responses to inflammation.

View Article and Find Full Text PDF

Loss of skeletal muscle mass and function is a hallmark of aging. This phenomenon has been related to a dysregulation of mitochondrial function and proteostasis. Calorie restriction (CR) has been demonstrated to delay aging and preserve function until late in life, particularly in muscle.

View Article and Find Full Text PDF

Processes that have been linked to aging and cancer include an inflammatory milieu driven by senescent cells. Senescent cells lose the ability to divide, essentially irreversibly, and secrete numerous proteases, cytokines and growth factors, termed the senescence-associated secretory phenotype (SASP). Senescent cells that lack p53 tumor suppressor function show an exaggerated SASP, suggesting the SASP is negatively controlled by p53.

View Article and Find Full Text PDF

Calorie restriction, without malnutrition, has been shown to increase lifespan and is associated with a shift away from glycolysis toward beta-oxidation. The objective of this study was to mimic this metabolic shift using low-carbohydrate diets and to determine the influence of these diets on longevity and healthspan in mice. C57BL/6 mice were assigned to a ketogenic, low-carbohydrate, or control diet at 12 months of age and were either allowed to live their natural lifespan or tested for physiological function after 1 or 14 months of dietary intervention.

View Article and Find Full Text PDF

Shc proteins play a role in energy metabolism through interaction with the insulin receptor. The aim of this study was to determine whether Shc proteins influence liver glycolysis and gluconeogenesis under both fed and fasted states. Decreased glycolytic and increased gluconeogenic and transamination enzyme activities were observed in ShcKO versus WT mice.

View Article and Find Full Text PDF

Calorie restriction (CR) consistently extends longevity and delays age-related diseases across several animal models. We have previously shown that different dietary fat sources can modulate life span and mitochondrial ultrastructure, function and membrane fatty acid composition in mice maintained on a 40% CR. In particular, animals consuming lard as the main fat source (CR-Lard) lived longer than CR mice consuming diets with soybean oil (CR-Soy) or fish oil (CR-Fish) as the predominant lipid source.

View Article and Find Full Text PDF

The Membrane Theory of Aging proposes that lifespan is inversely related to the level of unsaturation in membrane phospholipids. Calorie restriction (CR) without malnutrition extends lifespan in many model organisms, which may be related to alterations in membrane phospholipids fatty acids. During the last few years our research focused on studying how altering the predominant fat source affects the outcome of CR in mice.

View Article and Find Full Text PDF

Calorie restriction (CR) without malnutrition extends life span in several animal models. It has been proposed that a decrease in the amount of polyunsaturated fatty acids (PUFAs), and especially n-3 fatty acids, in membrane phospholipids may contribute to life span extension with CR. Phospholipid PUFAs are sensitive to dietary fatty acid composition, and thus, the purpose of this study was to determine the influence of dietary lipids on life span in CR mice.

View Article and Find Full Text PDF

Neuropathological symptoms of Alzheimer's disease appear in advances stages, once neuronal damage arises. Nevertheless, recent studies demonstrate that in early asymptomatic stages, ß-amyloid peptide damages the cerebral microvasculature through mechanisms that involve an increase in reactive oxygen species and calcium, which induces necrosis and apoptosis of endothelial cells, leading to cerebrovascular dysfunction. The goal of our work is to study the potential preventive effect of the lipophilic antioxidant coenzyme Q (CoQ) against ß-amyloid-induced damage on human endothelial cells.

View Article and Find Full Text PDF

In this paper we analyzed changes in hepatocyte mitochondrial mass and ultrastructure as well as in mitochondrial markers of fission/fusion and biogenesis in mice subjected to 40% calorie restriction (CR) for 18 months versus ad libitum-fed controls. Animals subjected to CR were separated into three groups with different dietary fats: soybean oil (also in controls), fish oil and lard. Therefore, the effect of the dietary fat under CR was studied as well.

View Article and Find Full Text PDF

Imbalance between proliferation and cell death accounts for several age-linked diseases. Aging, calorie restriction (CR), and fat source are all factors that may influence apoptotic signaling in liver, an organ that plays a central metabolic role in the organism. Here, we have studied the combined effect of these factors on a number of apoptosis regulators and effectors.

View Article and Find Full Text PDF