Background: Non-insulin-dependent diabetes mellitus, or type 2 diabetes, is one of the diseases of greatest concern worldwide, and research into natural compounds that are capable of regulating glycemia and insulin resistance is therefore gaining importance. In the preclinical stages, is considered a promising in vivo model for research into this disease. Most studies have been carried out using mutant strains and observing changes in their phenotype rather than directly measuring the effects within the worms.
View Article and Find Full Text PDFIn previous research, we created a model with homozygous mutations in calreticulin similar to those found in patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF), two myeloproliferative neoplasms (MPNs). This model, lacking JAK orthologs, enabled us to examine the transcriptomic effects caused by mutant calreticulin without the influence of JAK/STAT activation, the primary pathogenic mechanism associated with calreticulin mutations known to date. Most of the gene expression changes observed seemed to be due to a partial loss of protein function, with the alteration of the extracellular matrix being particularly notable.
View Article and Find Full Text PDFEssential thrombocythemia (ET) is a blood cancer caused by mutations in and . It is widely recognized that both mutations lead to the constitutive activation of JAK2/STAT signaling, although other JAK/STAT-independent pathogenic mechanisms triggered by these alterations have also been described in ET. In an attempt to study JAK2/STAT-independent mechanisms derived from mutations, our research group created a model with patient-like mutations in calreticulin that lacks JAK counterparts.
View Article and Find Full Text PDFThe oral administration of therapeutic proteins copes with important challenges (mainly degradation and poor absorption) making their potential therapeutic application extremely difficult. The aim of this study was to design and evaluate the potential of the combination between mucus-permeating nanoparticles and permeation enhancers as a carrier for the oral delivery of the monoclonal antibody bevacizumab, used as a model of therapeutic protein. For this purpose, bevacizumab was encapsulated in PEG-coated albumin nanoparticles as a hydrophobic ion-pairing complex with either sodium deoxycholate (DS) or sodium docusate (DOCU).
View Article and Find Full Text PDFBackground: Essential thrombocythemia (ET) is one of the most common types of Ph-negative myeloproliferative neoplasms, an infrequent group of blood cancers that arise from a CD34 + hematopoietic stem cell (HSC) in the bone marrow (BM) primarily due to driver mutations in JAK2, CALR or MPL. These aberrations result in an overproduction of mature myeloid cells in peripheral blood (PB). To date, no targeted therapies have been approved for ET patients, so the study of the molecular mechanisms behind the disease and the identification of new therapeutic targets may be of interest.
View Article and Find Full Text PDFMolting is an essential developmental process in However, the study of molting in the worm has been limited by the lack of automated techniques that allow monitoring the process in a simple way. In 2015, Olmedo . published an automated method to monitor the timing of each larval stage and molt in using bioluminescence.
View Article and Find Full Text PDFCalreticulin (CALR) is a multifunctional calcium-binding protein whose expression levels have been correlated with detection, clinical phase of disease, metastasis, and survival of various types of cancer. Therefore, the study of the regulation of the cellular levels of CALR may be important to understand the neoplastic process. , which has a CALR ortholog (CRT-1), has been used as a model organism for the characterization of CALR, and several conditions promoting the upregulation of have been studied and established to understand the molecular control of transcription and assess the function of the protein.
View Article and Find Full Text PDFThere is growing evidence that -negative myeloproliferative neoplasms (MPNs) are disorders in which multiple molecular mechanisms are significantly disturbed. Since their discovery, driver mutations have been demonstrated to trigger pathogenic mechanisms apart from the well-documented activation of JAK2/MPL-related pathways, but the lack of experimental models harboring mutations in a JAK2/MPL knockout background has hindered the research on these non-canonical mechanisms. In this study, CRISPR/Cas9 was performed to introduce homozygous patient-like calreticulin mutations in a model that naturally lacks and orthologs.
View Article and Find Full Text PDFThe aim was to evaluate the potential of mucus-permeating nanoparticles for the oral administration of insulin. These nanocarriers, based on the coating of zein nanoparticles with a polymer conjugate containing PEG, displayed a size of 260 nm with a negative surface charge and an insulin payload of 77 μg/mg. In intestinal pig mucus, the diffusivity of these nanoparticles (PPA-NPs) was found to be 20-fold higher than bare nanoparticles (NPs).
View Article and Find Full Text PDFCancers (Basel)
February 2021
-negative myeloproliferative neoplasms (polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF)) are infrequent blood cancers characterized by signaling aberrations. Shortly after the discovery of the somatic mutations in JAK2, MPL, and CALR that cause these diseases, researchers extensively studied the aberrant functions of their mutant products. In all three cases, the main pathogenic mechanism appears to be the constitutive activation of JAK2/STAT signaling and JAK2-related pathways (MAPK/ERK, PI3K/AKT).
View Article and Find Full Text PDFThe aim was to evaluate the potential of nanocarriers, based on the coating of zein nanoparticles (ZNP) with a Gantrez® AN-PEG conjugate (GP), for the oral delivery of insulin. ZNP-GP displayed less negative surface charge and a 14-fold higher diffusion coefficient in pig intestinal mucus than ZNP. Both nanoparticles showed a spherical shape and an insulin load of 77.
View Article and Find Full Text PDFSupplementation with bioactive compounds capable of regulating energy homeostasis is a promising strategy to manage obesity. Here, we have screened the ability of different phenolic compounds (myricetin, kaempferol, naringin, hesperidin, apigenin, luteolin, resveratrol, curcumin, and epicatechin) and phenolic acids (-coumaric, ellagic, ferulic, gallic, and vanillic acids) regulating fat accumulation. Resveratrol exhibited the strongest lipid-reducing activity, which was accompanied by the improvement of lifespan, oxidative stress, and aging, without affecting worm development.
View Article and Find Full Text PDFAging-related diseases can be triggered by multiple factors such as oxidative stress. Oxidative stress is an imbalance between free radicals and antioxidants, so today, compounds capable of reducing or neutralizing free radicals are being studied for a therapeutic use. Origanum vulgare L.
View Article and Find Full Text PDFThe metabolic properties of omega-6 fatty acid consumption are being increasingly accepted. We had previously observed that supplementation with a borage seed oil (BSO), as a source of linoleic (18:2n-6; LA) and gamma-linolenic (18:3n-6; GLA) acids, reduces body weight and visceral adiposity and improves insulin sensitivity in a diet-induced obesity model of Wistar rats. Here, it was investigated whether the anti-obesogenic properties of BSO could be maintained in a pre-obese model of rats, and if these effects are enhanced by a combination with low doses of quercetin, together with its potential role in the regulation of the adipocyte biology.
View Article and Find Full Text PDFCocoa polyphenols exhibit high antioxidant activity and have been proposed as a potential adjuvant for the treatment of metabolic disturbances. Here, we demonstrate that supplementation with low doses (14 and 140 mg per kg per rat) of a complete cocoa extract induces metabolic benefits in a diet-induced obesity (DIO) model of Wistar rats. After 10 weeks, cocoa extract-supplemented animals exhibited significantly lower body weight gain and food efficiency, with no differences in energy intake.
View Article and Find Full Text PDFThe characterization of compounds with antioxidant activity is of great interest due to their ability to reduce reactive oxygen species production and, therefore, prevent some age-related diseases. Its antioxidant capacity can be analyzed by different methods both in vitro and in vivo. is an in vivo model widely used in ageing research.
View Article and Find Full Text PDFMol Clin Oncol
June 2019
In recent years it has been shown that the causes of chronic myeloproliferative neoplasms (MPNs) are more complex than a simple signaling aberration and many other mutated genes affecting different cell processes have been described. For instance, mutations in genes encoding epigenetic regulators are more frequent than expected. One of the latest genes described as mutated is ().
View Article and Find Full Text PDFPhenolic compounds might modulate adiposity. Here, we report our observation that polyphenols and phenolic acids inhibit adipogenesis in 3T3-L1 with different intensity depending on the family and the stage of differentiation. While quercetin and resveratrol inhibited lipid accumulation along the whole process of differentiation, apigenin and myricetin were active during the early and latest stages, but not intermediate, contrary to hesperidin.
View Article and Find Full Text PDFObesity is a medical condition with increasing prevalence, characterized by an accumulation of excess fat that could be improved using some bioactive compounds. However, many of these compounds with in vitro activity fail to respond in vivo, probably due to the sophistication of the physiological energy regulatory networks. In this context, C.
View Article and Find Full Text PDFThe aim of this work was to prepare and evaluate cyclodextrins-modified poly(anhydride) nanoparticles to enhance the oral administration of glibenclamide. A conjugate polymer was synthesized by incorporating hydroxypropyl-β-cyclodextrin to the backbone of poly(methylvinyl ether-co-maleic anhydride) via Steglich reaction. The degree of substitution of anhydride rings by cyclodextrins molecules was calculated to be 4.
View Article and Find Full Text PDFBioactive compounds, including some fatty acids (FAs), can induce beneficial effects on body fat-content and metabolism. In this work, we have used C. elegans as a model to examine the effects of several FAs on body fat accumulation.
View Article and Find Full Text PDFThe ratio of the effective number of breeders () to the adult census size (), /, approximates the departure from the standard capacity of a population to maintain genetic diversity in one reproductive season. This information is relevant for assessing population status, understanding evolutionary processes operating at local scales, and unraveling how life-history traits affect these processes. However, our knowledge on / ratios in nature is limited because estimation of both parameters is challenging.
View Article and Find Full Text PDFAccurate characterization of genetic diversity is essential for understanding population demography, predicting future trends and implementing efficient conservation policies. For that purpose, molecular markers are routinely developed for nonmodel species, but key questions regarding sampling design, such as calculation of minimum sample sizes or the effect of relatives in the sample, are often neglected. We used accumulation curves and sibship analyses to explore how these 2 factors affect marker performance in the characterization of genetic diversity.
View Article and Find Full Text PDF