Publications by authors named "Jose L Todoli"

The present work delves into the feasibility of employing a novel structured sorbent referred to as GFAD (Guefoam Adsorption Device) for the determination of volatile organic compounds (VOCs) in liquid samples. The chosen method has been static headspace sorptive extraction-thermal desorption gas chromatography mass spectrometry (HSSE-TD-GC-MS). The GFAD comprises an aluminum cellular material with a distinct replication structure and a solid guest phase consisting of activated carbon particles dispersed within the cavities of the cellular aluminum.

View Article and Find Full Text PDF

A systematic study on the high-temperature Torch Integrated Sample Introduction System (TISIS) for use in Inductively Coupled Plasma Mass Spectrometry (ICP-MS) has been performed. The investigation included the optimization of the relevant parameters (chamber temperature, sheathing gas flow rate, nebulizer gas flow rate, sample uptake rate), the evaluation of its performance characteristics (sensitivity, limits of detection, stability, memory effects, use with the dynamic reaction cell) and representative applications to environmental, biological and clinical samples. Under the optimal conditions (T=150°C; nebulizer gas flow rate of 0.

View Article and Find Full Text PDF

The potential of high temperature liquid chromatography (HTLC) with detection by inductively coupled plasma mass spectrometry (ICP-MS) for the determination of arsenosugars in marine organisms was examined for the first time. The retention behavior of four naturally occurring dimethylarsinoylribosides was studied on a graphite column using plain water as mobile phase. An aqueous solution of pH 8, ionic strength 13.

View Article and Find Full Text PDF

In this work, a new extraction method termed aerosol phase extraction has been developed for the first time. The new method was based on the nebulisation of the sample onto the extracting solution to maximize the contact surface. The influential parameters are: agitation time, chelating agent concentration and inorganic acid concentration.

View Article and Find Full Text PDF

In the present work, an evaporative light scattering detector was used as a high-temperature liquid chromatography detector for the determination of carbohydrates. The compounds studied were glucose, fructose, galactose, sucrose, maltose, and lactose. The effect of column temperature on the retention times and detectability of these compounds was investigated.

View Article and Find Full Text PDF

The present work describes the first attempt to use microwave reversed phase high performance liquid chromatography (MW-HPLC) to carry out the separation of organic compounds. Biotin and riboflavin were selected for the characterization of the new separation technique. Additional vitamins (nicotinamide, pyridoxine and thiamine) were used as reference compounds.

View Article and Find Full Text PDF

Phosphorus is a key nutrient and in natural environments regulates trophic status and consequently water quality. Therefore monitoring of phosphorus content in natural and wastewater is essential. Although several phosphorus species can be found in the environment, the majority of the methods developed are for orthophosphate determination.

View Article and Find Full Text PDF

In the present work, an inductively coupled plasma atomic emission spectrometry (ICP-AES) system was used as a high temperature liquid chromatography (HTLC) detector for the determination of alcohols and metals in beverages. For the sake of comparison, a refractive index (RI) detector was also employed for the first time to detect alcohols with HTLC. The organic compounds studied were methanol, ethanol, propan-1-ol and butan-1-ol (in the 10-125 mg/L concentration range) and the elements tested were magnesium, aluminum, copper, manganese and barium at concentrations included between roughly 0.

View Article and Find Full Text PDF

The potential of narrow bore high-performance liquid chromatography (HPLC) with detection by inductively coupled plasma mass spectrometry (ICP-MS) for fast determination of arsenosugars in algal extracts was explored. The retention behavior of four naturally occurring dimethylarsinoylribosides on an anion-exchange microbore column was investigated, with the mobile phase flow rate ranging from 60 to 200μLmin(-1). A low sample consumption system consisting of a micronebulizer and a low inner volume cyclonic spray chamber was used as the interface between the micro-column and the ICP mass spectrometer.

View Article and Find Full Text PDF

The coupling of a High-Temperature Liquid Chromatography system (HTLC) with an Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) is reported for the first time. This hyphenation combines the separation efficiency of HTLC with the detection power of a simultaneous ICP-AES system and allows the combined determination of organic compound and metals. The effluents of the column were introduced into the spectrometer and the chromatograms for organic compounds were obtained by plotting the carbon emission signal at a characteristic wavelength versus time.

View Article and Find Full Text PDF

A new calibration method for high-performance liquid chromatography was validated. The method was called single-injection calibration approach (SICA) because it allowed to obtain a complete calibration curve by means of a single injection of a standard solution containing several non-volatile and semi-volatile organic compounds at different concentration levels. The compounds studied included carboxylic acids, polyalcohols, carbohydrates and water-soluble vitamins.

View Article and Find Full Text PDF

The applicability of the HPLC-ICP-AES coupling for the simultaneous determination of carbohydrates, carboxylic acids, alcohols, and metals in a single chromatographic run has been demonstrated in the present work. Five saccharides, glucose, fructose, sucrose, sorbitol, and lactose; five carboxylic acids, citric, tartaric, malic, lactic, and acetic; and three alcohols, glycerol, ethanol, and methanol, have been determined. A H+ cation exchange column has been used to separate these compounds.

View Article and Find Full Text PDF