Cytokinesis in plant cells begins with the fusion of vesicles that transport cell wall materials to the center of the cell division plane, where the cell plate forms and expands radially until it fuses with the parental cell wall. Vesicle fusion is facilitated by -SNARE complexes, with assistance from Sec1/Munc18 (SM) proteins. The SNARE protein KNOLLE and the SM protein KEULE are required for membrane fusion at the cell plate.
View Article and Find Full Text PDFIn diploid organisms, haploinsufficiency can be defined as the requirement for more than one fully functional copy of a gene. In contrast to most genes, whose loss-of-function alleles are recessive, loss-of-function alleles of haploinsufficient genes are dominant. However, forward and reverse genetic screens are biased toward obtaining recessive, loss-of-function mutations, and therefore, dominant mutations of all types are underrepresented in mutant collections.
View Article and Find Full Text PDFHuman Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) functions as a dNTPase to maintain dNTP pool balance. In eukaryotes, the limiting step in de novo dNTP biosynthesis is catalyzed by RIBONUCLEOTIDE REDUCTASE (RNR). In Arabidopsis, the RNR1 subunit of RNR is encoded by CRINKLED LEAVES 8 (CLS8), and RNR2 by three paralogous genes, including TSO MEANING 'UGLY' IN CHINESE 2 (TSO2).
View Article and Find Full Text PDFMapping-by-sequencing combines Next Generation Sequencing (NGS) with classical genetic mapping by linkage analysis to establish gene-to-phenotype relationships. Although numerous tools have been developed to analyze NGS datasets, only a few are available for mapping-by-sequencing. One such tool is Easymap, a versatile, easy-to-use package that performs automated mapping of point mutations and large DNA insertions.
View Article and Find Full Text PDFATP-Binding Cassette E (ABCE) proteins dissociate cytoplasmic ribosomes after translation terminates, and contribute to ribosome recycling, thus linking translation termination to initiation. This function has been demonstrated to be essential in animals, fungi, and archaea, but remains unexplored in plants. In most species, ABCE is encoded by a single-copy gene; by contrast, has two paralogs, of which seems to conserve the ancestral function.
View Article and Find Full Text PDFThe interplay between auxin and cytokinins affects facets of plant development as different as ovule formation and lateral root initiation. Moreover, cytokinins favor complexity in the development of Solanum lycopersicum and Cardamine hirsuta compound leaves. Nevertheless, no role has been proposed for cytokinins in patterning the margins of the simple leaves of Arabidopsis thaliana, a process that is assumed to be sufficiently explained by auxin localization.
View Article and Find Full Text PDFRandom mutagenesis followed by screening for phenotypes of interest is a widely used strategy for genetic dissection of biological pathways; however, identifying the causal gene traditionally required time-consuming mapping approaches based on iterative linkage analysis. Mapping-by-sequencing accelerates this process, efficiently linking the phenotype of a mutant to a narrow candidate genomic region, using next-generation sequencing (NGS) data from a mapping population segregating for the mutant phenotype. To enable researchers at any bioinformatics skill level to conduct mapping-by-sequencing, we developed the Easymap mapping software.
View Article and Find Full Text PDFThe -methyladenosine (mA) pathway has been widely described as a viral regulatory mechanism in animals. We previously reported that the capsid protein (CP) of alfalfa mosaic virus (AMV) interacts with the Arabidopsis mA demethylase ALKBH9B regulating mA abundance on viral RNAs (vRNAs) and systemic invasion of floral stems. Here, we analyze the involvement of other ALKBH9 proteins in AMV infection and we carry out a detailed evaluation of the infection restraint observed in mutant plants.
View Article and Find Full Text PDFMapping-by-sequencing strategies combine next-generation sequencing (NGS) with classical linkage analysis, allowing rapid identification of the causal mutations of the phenotypes exhibited by mutants isolated in a genetic screen. Computer programs that analyze NGS data obtained from a mapping population of individuals derived from a mutant of interest to identify a causal mutation are available; however, the installation and usage of such programs requires bioinformatic skills, modifying or combining pieces of existing software, or purchasing licenses. To ease this process, we developed Easymap, an open-source program that simplifies the data analysis workflows from raw NGS reads to candidate mutations.
View Article and Find Full Text PDFForward genetic screens have successfully identified many genes and continue to be powerful tools for dissecting biological processes in Arabidopsis and other model species. Next-generation sequencing technologies have revolutionized the time-consuming process of identifying the mutations that cause a phenotype of interest. However, due to the cost of such mapping-by-sequencing experiments, special attention should be paid to experimental design and technical decisions so that the read data allows to map the desired mutation.
View Article and Find Full Text PDFAdventitious roots (ARs) are formed during post-embryonic development from non-root tissues, in processes that are highly dependent on environmental inputs. Whole root excision from young seedlings has been previously used as a model to study adventitious root formation in hypocotyls. To identify novel regulators of adventitious root formation, we analyzed adventitious rooting in the hypocotyl after whole root excision in 112 T-DNA homozygous leaf mutants, which were selected based on the dynamic expression profiles of their annotated genes during hormone-induced and wound-induced tissue regeneration.
View Article and Find Full Text PDFMost members of the large family of ATP-Binding Cassette (ABC) proteins function as membrane transporters. However, the most evolutionarily conserved group, the ABCE protein subfamily, comprises soluble proteins that were initially denoted RNase L inhibitor (RLI) proteins. ABCE proteins are present in all eukaryotes and archaea and are encoded by a single gene in most genomes, or by two genes in a few cases.
View Article and Find Full Text PDFAll critical developmental and physiological events in a plant's life cycle depend on the proper activation and repression of specific gene sets, and this often involves epigenetic mechanisms. Some mutants with disorders of the epigenetic machinery exhibit pleiotropic defects, including incurved leaves and early flowering, due to the ectopic and heterochronic derepression of developmental regulators. Here, we studied one such mutant class, the () loss-of-function mutants.
View Article and Find Full Text PDFIn , ARGONAUTE1 (AGO1) plays a central role in microRNA (miRNA) and small interfering RNA (siRNA)-mediated silencing and is a key component in antiviral responses. The polerovirus F-box P0 protein triggers AGO1 degradation as a viral counterdefense. Here, we identified a motif in AGO1 that is required for its interaction with the S phase kinase-associated protein1-cullin 1-F-box protein (SCF) P0 (SCF) complex and subsequent degradation.
View Article and Find Full Text PDFAuxin (indole-3-acetic acid, IAA) plays fundamental roles as a signalling molecule during numerous plant growth and development processes. The formation of local auxin gradients and auxin maxima/minima, which is very important for these processes, is regulated by auxin metabolism (biosynthesis, degradation, and conjugation) as well as transport. When studying auxin metabolism pathways it is crucial to combine data obtained from genetic investigations with the identification and quantification of individual metabolites.
View Article and Find Full Text PDFBalanced development of adaxial and abaxial domains in leaf primordia is critical for the formation of flat symmetric leaf lamina. Arabidopsis ASYMMETRIC LEAVES1 (AS1) and AS2 proteins form a complex (AS1-AS2), which acts as key regulators for the adaxial development by the direct repression of expression of the abaxial gene / (/). Many modifier mutations have been identified, which enhance the defect of and mutations to generate abaxialized filamentous leaves without adaxial traits, suggesting that the development of the adaxial domain is achieved by cooperative repression by AS1-AS2 and the wild-type proteins corresponding to the modifiers.
View Article and Find Full Text PDFTo enhance our understanding of the roles of mitochondrial transcription termination factors (mTERFs) in plants, we have taken a reverse genetic approach in Arabidopsis thaliana. One of the mutants isolated carried a novel allele of the mTERF6 gene, which we named mterf6-5. mTERF6 is a chloroplast and mitochondrial localised protein required for the maturation of chloroplast isoleucine tRNA.
View Article and Find Full Text PDFBody regeneration through formation of new organs is a major question in developmental biology. We investigated de novo root formation using whole leaves of Arabidopsis (). Our results show that local cytokinin biosynthesis and auxin biosynthesis in the leaf blade followed by auxin long-distance transport to the petiole leads to proliferation of J0121-marked xylem-associated tissues and others through signaling of INDOLE-3-ACETIC ACID INDUCIBLE28 (IAA28), CRANE (IAA18), WOODEN LEG, and ARABIDOPSIS RESPONSE REGULATORS1 (ARR1), ARR10, and ARR12.
View Article and Find Full Text PDFSeveral hundred genes are required for embryonic and gametophytic development in the model plant Arabidopsis thaliana, as inferred from the lethality of their mutations. Despite many of these genes are expressed throughout the plant life cycle, the corresponding mutants arrest at early stages, preventing the study of their post-embryonic functions by conventional methods. Clonal analysis represents an effective solution to this problem by uncovering the effects of embryo-lethal mutations in sectors of mutant cells within an otherwise normal adult plant.
View Article and Find Full Text PDFMost plant leaves exhibit bilateral symmetry, which has been hypothesized as an inevitable consequence of the existence of the proximodistal and dorsoventral axes. No gene has been described that affects leaf bilateral symmetry but not dorsoventrality in Arabidopsis thaliana. We screened for viable insertional mutations that affect leaf morphology, and out of more than 700 mutants found only one, desigual1-1 (deal1-1), that exhibited bilateral symmetry breaking but no obvious defects in dorsoventrality.
View Article and Find Full Text PDFBiomass production requires the coordination between growth and metabolism. In a large-scale screen for mutants affected in leaf morphology, we isolated the orbiculata1 (orb1) mutants, which exhibit a pale green phenotype and reduced growth. The combination of map-based cloning and next-generation sequencing allowed us to establish that ORB1 encodes the GLUTAMATE SYNTHASE 1 (GLU1) enzyme, also known as FERREDOXIN-DEPENDENT GLUTAMINE OXOGLUTARATE AMINOTRANSFERASE 1 (Fd-GOGAT1).
View Article and Find Full Text PDF