Publications by authors named "Jose L Marco"

Hispanolone is a furolabdane diterpene isolated from Ballota hispanica, whose natural product chemistry has been summarized and updated here, including several aspects associated with the isolation, structure determination, hemisynthesis, total synthesis, and pharmacology, and related hispanolone diterpenoids that have attracted the interest of different laboratories from diverse perspective and expertise in the last forty-two years.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress has recently been proposed as one of the factors contributing to apoptotic cell death in Parkinson's disease (PD). Although MAO-B inhibitors have been suggested to exert neuroprotective effects in several experimental models of PD, their effectiveness against ER stress has not been fully determined. Therefore, we have studied the potential usefulness of PF9601N, a non-amphetamine-like MAO-B inhibitor, in preventing cell death in a cell culture model of ER stress.

View Article and Find Full Text PDF

PF9601N [N-(2-propynyl) 2-(5-benzyloxyindol) methylamine] is a non-amphetamine type MAO-B inhibitor that has shown neuroprotective properties in vivo using different experimental models of Parkinson's disease. The mechanisms underlying its neuroprotective effects are poorly understood, but appear to be independent of MAO-B inhibition. We have studied its neuroprotective properties using the human SH-SY5Y dopaminergic cell line exposed to 1-methyl-4-phenylpyridinium (MPP(+)), a cellular model of Parkinson's disease.

View Article and Find Full Text PDF

Purpose: The selective monoamine oxidase-B (MAO-B) inhibitor, l-deprenyl, is still used for treating Parkinson's patients, however, a disadvantage of its use lies in the formation of l-amphetamine and l-methamphetamine. Subsequently, this has promoted the design of a novel, more potent, MAO-B inhibitor PF9601N, which also has neuroprotective and antioxidant properties. The aim of this work was to investigate the effect of treatment with PF9601N on its own phase I hepatic metabolism.

View Article and Find Full Text PDF

Obesity has recently become one of the most important public health problems. It is associated with a high rate of mortality, mainly because of cardiovascular disease, and can cause hormonal abnormalities such as hypogonadotropic hypogonadism. Weight loss is very beneficial for obese patients, because it results in improvement or even normalization of these conditions.

View Article and Find Full Text PDF

Unlabelled: Abstract.

Background: NSAIDs are a significant cause of drug-related hospital admissions and deaths. The therapeutic effects of NSAIDs have been associated with the risk for developing adverse events, mainly in the gastrointestinal tract.

View Article and Find Full Text PDF

Acetylcholinesterase inhibition was modeled for a set of 136 tacrine analogues using Bayesian-regularized Genetic Neural Networks (BRGNNs). In the BRGNN approach the Bayesian-regularization avoids overtraining/overfitting and the genetic algorithm (GA) allows exploring an ample pool of 3D-descriptors. The predictive capacity of our selected model was evaluated by averaging multiple validation sets generated as members of diverse-training set neural network ensembles (NNEs).

View Article and Find Full Text PDF

Ethyl 5-amino-6,7,8,9-tetrahydro-2-methyl-4-phenylbenzol[1,8] naphthyridine-3-carboxylate (ITH4012) is a novel tacrine derivative that can reduce cell death induced by various compounds with different mechanisms of action, such as thapsigargin (reticular stress), H2O2 (free radicals), and veratridine (calcium overload), in bovine chromaffin cell. Cell viability, quantified as lactic dehydrogenase release, was significantly reduced by ITH4012 at concentrations ranging from 0.01 to 3 microM.

View Article and Find Full Text PDF

The synthesis and the biological activity of compounds 5-40 as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as modulators of voltage-dependent Ca(2+) channels and nicotinic receptors, are described. These molecules are tacrine analogues, which have been prepared from polyfunctionalized 6-amino-5-cyano-4H-pyrans, 6-amino-5-cyano-pyridines and 5-amino-2-aryl-3-cyano-1,3-oxazoles via Friedländer reaction with selected cycloalkanones. These compounds are moderate acetylcholinesterase and butyrylcholinesterase inhibitors, the BuChE/AChE selectivity of the most active molecules ranges from 10.

View Article and Find Full Text PDF

The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities of a series of pyrano[2,3-b]quinolines (2, 3), [1,8]naphthyridines (5, 6), 4-amino-2,3-diaryl-5,6,7,8-tetrahydrofuro[2,3-b]quinolines (11-13)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]furo[2,3-b]pyridine (14), 4-amino-5,6,7,8-tetrahydro-2,3-diphenylthieno[2,3-b]quinoline (15)/ 4-amino-6,7,8,9-tetrahydro-2,3-diphenyl-5H-cyclohepta[e]thieno[2,3-b]pyridine (16) are described. These compounds are tacrine analogues that have been prepared from readily available polyfunctionalized ethyl [6-amino-5-cyano-4H-pyran]-3-carboxylates (9, 10), ethyl [6-amino-5-cyanopyridine]-3-carboxylates (7, 8), 2-amino-3-cyano-4,5-diarylfurans (17-19) and 2-amino-3-cyano-4,5-diphenylthiophene (20) via Friedländer condensation with selected ketones. These compounds are competitive and, in a few cases, non-competitive inhibitors for AChE, the most potent being compound (14), though three-fold less active than tacrine.

View Article and Find Full Text PDF

The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition activities of a series of 4-amino-2, 3-diaryl-5, 6, 7, 8-tetrahydrofuro[2, 3-b]quinolines (10-12)/4-amino-5, 6, 7, 8-tetrahydro-2, 3-diphenylthieno[2, 3-b]quinoline (14) and 4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-diphenylcyclohepta[e]furo[2, 3-b]pyridine (13)/4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-phenylcyclohepta[e]thieno[2, 3-b]pyridine (15) are described. These compounds are tacrine (THA) analogues which have been prepared either from readily available 2-amino-3-cyano-4, 5-diarylfurans (16-18) or from 2-amino-3-cyano-4, 5-diphenylthiophene (19), via Friedländer condensation with cyclohexanone or cycloheptanone. These compounds are competitive inhibitors for acetylcholinesterase, the more potent being compound (13) which is three-fold less active than tacrine.

View Article and Find Full Text PDF

A new series of tacrine (9-amino-1,2,3,4-tetrahydroacridine) derivatives were synthesized and their effects on 45Ca(2+) entry into bovine adrenal chromaffin cells stimulated with dimethylphenylpiperazinium (DMPP) or K(+), studied. At 3 microM, compound 1 did not affect (45)Ca(2+) uptake evoked by DMPP. Compounds 14, 15 and 17 inhibited the effects of DMPP by 30%.

View Article and Find Full Text PDF