Publications by authors named "Jose L Lado"

Article Synopsis
  • Designer heterostructures combining supramolecular metal complexes (SMCs) and the quasi-2D superconductor NbSe₂ were developed to create unique superconducting states through the interplay of magnetism and superconductivity.
  • Scanning tunneling microscopy revealed the formation of Yu-Shiba-Rusinov bands due to interactions between SMC magnetism and NbSe₂ superconductivity, while additional measurements indicated antiferromagnetic coupling among SMC units.
  • The resulting unconventional 3×3 magnetic reconstruction could lead to innovative quantum materials, advancing the research of unconventional superconductors and quantum spin liquids.
View Article and Find Full Text PDF

Twisted magnetic van der Waals materials provide a flexible platform to engineer unconventional magnetism. Here we demonstrate the emergence of electrically tunable topological moiré magnetism in twisted bilayers of the spin-spiral multiferroic NiI. We establish a rich phase diagram featuring uniform spiral phases, a variety of -skyrmion lattices, and nematic spin textures ordered at the moiré scale.

View Article and Find Full Text PDF

Persistent currents circulate continuously without requiring external power sources. Here, we extend their theory to include dissipation within the framework of non-Hermitian quantum Hamiltonians. Using Green's function formalism, we introduce a non-Hermitian Fermi-Dirac distribution and derive an analytical expression for the persistent current that relies solely on the complex spectrum.

View Article and Find Full Text PDF

Artificial quantum systems have emerged as platforms to realize topological matter in a well-controlled manner. So far, experiments have mostly explored non-interacting topological states, and the realization of many-body topological phases in solid-state platforms with atomic resolution has remained challenging. Here we construct topological quantum Heisenberg spin lattices by assembling spin chains and two-dimensional spin arrays from spin-1/2 Ti atoms on an insulating MgO film in a scanning tunnelling microscope.

View Article and Find Full Text PDF

Two-dimensional van der Waals materials have become an established platform to engineer flat bands which can lead to strongly-correlated emergent phenomena. In particular, the family of Ta dichalcogenides in the 1T phase presents a star-of-David charge density wave that creates a flat band at the Fermi level. For TaSand TaSethis flat band is at half filling leading to a magnetic insulating phase.

View Article and Find Full Text PDF

A valley filter capable of generating a valley-polarized current is a crucial element in valleytronics, yet its implementation remains challenging. Here, we propose a valley filter made of a graphene bilayer which exhibits a 1D moiré pattern in the overlapping region of the two layers controlled by heterostrain. In the presence of a lattice modulation between layers, electrons propagating in one layer can have valley-dependent dissipation due to valley asymmetric interlayer coupling, thus giving rise to a valley-polarized current.

View Article and Find Full Text PDF

CeSiI has been recently isolated in the ultrathin limit, establishing CeSiI as the first intrinsic two-dimensional van der Waals heavy-fermion material up to 85 K. We show that, due to the strong spin-orbit coupling, the local moments develop a multipolar real-space magnetic texture, leading to local pseudospins with a nearly vanishing net moment. To elucidate its Kondo-screened regime, we extract from first-principles the parameters of the Kondo lattice model describing this material.

View Article and Find Full Text PDF

Identifying phase boundaries of interacting systems is one of the key steps to understanding quantum many-body models. The development of various numerical and analytical methods has allowed exploring the phase diagrams of many Hermitian interacting systems. However, numerical challenges and scarcity of analytical solutions hinder obtaining phase boundaries in non-Hermitian many-body models.

View Article and Find Full Text PDF

Progress in layered van der Waals materials has resulted in the discovery of ferromagnetic and ferroelectric materials down to the monolayer limit. Recently, evidence of the first purely 2D multiferroic material was reported in monolayer NiI. However, probing multiferroicity with scattering-based and optical bulk techniques is challenging on 2D materials, and experiments on the atomic scale are needed to fully characterize the multiferroic order at the monolayer limit.

View Article and Find Full Text PDF

Synthesis of one-dimensional molecular arrays with tailored stereoisomers is challenging yet has great potential for application in molecular opto-, electronic- and magnetic-devices, where the local array structure plays a decisive role in the functional properties. Here, we demonstrate the construction and characterization of dehydroazulene isomer and diradical units in three-dimensional organometallic compounds on Ag(111) with a combination of low-temperature scanning tunneling microscopy and density functional theory calculations. Tip-induced voltage pulses firstly result in the formation of a diradical species via successive homolytic fission of two C-Br bonds in the naphthyl groups, which are subsequently transformed into chiral dehydroazulene moieties.

View Article and Find Full Text PDF

Quantum magnets provide a powerful platform to explore complex quantum many-body phenomena. One example is triplon excitations, exotic many-body modes emerging from propagating singlet-triplet transitions. We engineer a minimal quantum magnet from organic molecules and demonstrate the emergence of dispersive triplon modes in one- and two-dimensional assemblies probed with scanning tunneling microscopy and spectroscopy.

View Article and Find Full Text PDF

Recent emergence of low-dimensional unconventional superconductors and their exotic interface properties calls for new approaches to probe the pairing symmetry, a fundamental and frequently elusive property of the superconducting condensate. Here, we introduce the unique capability of tunneling Andreev reflection (TAR) to probe unconventional pairing symmetry, utilizing the sensitivity of this technique to specific Andreev reflections. Specifically, suppression of the lowest-order Andreev reflection due to quantum interference but emergence of the higher-order Andreev processes provides direct evidence of the sign-changing order parameter in the paradigmatic FeSe superconductor.

View Article and Find Full Text PDF

Unconventional superconductors represent one of the fundamental directions in modern quantum materials research. In particular, nodal superconductors are known to appear naturally in strongly correlated systems, including cuprate superconductors and heavy-fermion systems. Van der Waals materials hosting superconducting states are well known, yet nodal monolayer van der Waals superconductors have remained elusive.

View Article and Find Full Text PDF

Scattering processes in quantum materials emerge as resonances in electronic transport, including confined modes, Andreev states, and Yu-Shiba-Rusinov states. However, in most instances, these resonances are driven by a single scattering mechanism. Here, we show the appearance of resonances due to the combination of two simultaneous scattering mechanisms, one from superconductivity and the other from graphene p-n junctions.

View Article and Find Full Text PDF

Two-dimensional magnetic materials provide an ideal platform to explore collective many-body excitations associated with spin fluctuations. In particular, it should be feasible to explore, manipulate, and ultimately design magnonic excitations in two-dimensional van der Waals magnets in a controllable way. Here we demonstrate the emergence of moiré magnon excitations, stemming from the interplay of spin-excitations in monolayer CrBr and the moiré pattern arising from the lattice mismatch with the underlying substrate.

View Article and Find Full Text PDF

Spectral functions of non-Hermitian Hamiltonians can reveal the existence of topologically nontrivial line gaps and the associated topological edge modes. However, the computation of spectral functions in a non-Hermitian many-body system remains an open challenge. Here, we put forward a numerical approach to compute spectral functions of a non-Hermitian many-body Hamiltonian based on the kernel polynomial method and the matrix-product state formalism.

View Article and Find Full Text PDF

Ferroelectric van der Waals heterostructures provide a natural platform to design a variety of electrically controllable devices. In this work, we demonstrate that AB bilayer graphene encapsulated in MoTe acts as a valley valve that displays a switchable built-in topological gap, leading to ferroelectrically driven topological channels. Using a combination of calculations and low energy models, we show that the ferroelectric order of MoTe allows the control of the gap opening in bilayer graphene and leads to topological channels between different ferroelectric domains.

View Article and Find Full Text PDF

2D ferroelectric materials provide a promising platform for the electrical control of quantum states. In particular, due to their 2D nature, they are suitable for influencing the quantum states of deposited molecules via the proximity effect. Here, electrically controllable molecular states in phthalocyanine molecules adsorbed on monolayer ferroelectric material SnTe are reported.

View Article and Find Full Text PDF

Magnetic frustrations in two-dimensional materials provide a rich playground to engineer unconventional phenomena. However, despite intense efforts, a realization of tunable frustrated magnetic order in two-dimensional materials remains an open challenge. Here we propose Coulomb engineering as a versatile strategy to tailor magnetic ground states in layered materials.

View Article and Find Full Text PDF

Direct detection of superconductivity has long been a key strength of point-contact Andreev reflection. However, its applicability to atomic-scale imaging is limited by the mechanical contact of the Andreev probe. To this end, we present a new method to probe Andreev reflection in a tunnel junction, leveraging tunneling spectroscopy and junction tunability to achieve quantitative detection of Andreev scattering.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDC) are a rich family of two-dimensional materials displaying a multitude of different quantum ground states. In particular, d TMDCs are paradigmatic materials hosting a variety of symmetry broken states, including charge density waves, superconductivity, and magnetism. Among this family, NbSe is one of the best-studied superconducting materials down to the monolayer limit.

View Article and Find Full Text PDF

The search for artificial topological superconductivity has been limited by the stringent conditions required for its emergence. As exemplified by the recent discoveries of various correlated electronic states in twisted van der Waals materials, moiré patterns can act as a powerful knob to create artificial electronic structures. Here, we demonstrate that a moiré pattern between a van der Waals superconductor and a monolayer ferromagnet creates a periodic potential modulation that enables the realization of a topological superconducting state that would not be accessible in the absence of the moiré.

View Article and Find Full Text PDF

Moiré patterns in van der Waal materials can be used for designing magnetic structures.

View Article and Find Full Text PDF

Heavy-fermion systems represent one of the paradigmatic strongly correlated states of matter. They have been used as a platform for investigating exotic behaviour ranging from quantum criticality and non-Fermi liquid behaviour to unconventional topological superconductivity. The heavy-fermion phenomenon arises from the exchange interaction between localized magnetic moments and conduction electrons leading to Kondo lattice physics, and represents one of the long-standing open problems in quantum materials.

View Article and Find Full Text PDF