Publications by authors named "Jose L Labandeira-Garcia"

Angiotensin, through its type-1 receptor (AT1), is a major inducer of inflammation and oxidative stress, contributing to several diseases. Autoimmune processes have been involved in neurodegeneration, including Parkinson's disease (PD). AT1 autoantibodies (AT1-AA) enhance neurodegeneration and PD, which was related to increased neuronal oxidative stress and neuroinflammation.

View Article and Find Full Text PDF
Article Synopsis
  • - Calcium ion (Ca) homeostasis is essential for proper neuron function, and this study investigated how the CB receptor (CBR) interacts with the ATR receptor to regulate cytoplasmic Ca levels in CNS neurons.
  • - A specific type of interaction called AT-CB receptor heteromers (ATCBHets) was identified using bioluminescence resonance energy transfer (BRET) in lab cells and in the context of Parkinson's disease (PD).
  • - The study found that activation of ATR reduces Ca levels in the presence of cannabinoids, and in a rat model of PD, lower levels of ATCBHets were linked to lesioned neurons, suggesting that cannabinoids might help mitigate calcium imbalance related to levodopa-induced
View Article and Find Full Text PDF

Renin-angiotensin system (RAS) dysfunctions have been associated to life-spam, and aging-related diseases, including neurodegenerative diseases, such as Parkinson's disease, and the neuroinflammatory associated processes. Mitochondrial dysfunctions play a major role in aging-related diseases, including dopaminergic neurodegeneration and neuroinflammation. However, the mechanisms of RAS/mitochondria interactions remain to be clarified.

View Article and Find Full Text PDF
Article Synopsis
  • Neuroinflammatory disorders are linked to mitochondrial dysfunction and transcriptional changes, particularly in activated microglia, which shows altered biogenesis and redox status.
  • This study utilized RNA sequencing to examine gene expression in microglia treated with adenosine A receptor modulators, revealing significant upregulation (over 40% of mitochondrial genes expressed differently) in response to treatment, highlighting their role in inflammation and oxidative stress.
  • The research also indicated improved mitochondrial function when using the adenosine A receptor antagonist in pro-inflammatory conditions, supporting the potential of targeting the adenosinergic system for therapeutic interventions in neuroinflammation.
View Article and Find Full Text PDF

Lipid nanoparticles (LNPs) currently dominate the RNA delivery landscape; however their limited diffusivity hampers targeted tissue dissemination, and, hence, their capacity for intracellular drug delivery. This is especially relevant for tissues such as the central nervous system (CNS), where overcoming proactive brain barriers is crucial for the efficacy of genetic therapeutics. This research aimed to create ionizable nanoemulsions (iNEs), a new generation of RNA delivery systems with enhanced diffusivity.

View Article and Find Full Text PDF

Background: Clinical trials have provided evidence that transplants of dopaminergic precursors, which may be replaced by new in vitro stem cell sources, can integrate into the host tissue, and alleviate motor symptoms in Parkinson´s disease (PD). In some patients, deterioration of graft function occurred several months after observing a graft-derived functional improvement. Rejection of peripheral organs was initially related to HLA-specific antibodies.

View Article and Find Full Text PDF

The renin-angiotensin system (RAS) was classically considered a circulating hormonal system that regulates blood pressure. However, different tissues and organs, including the brain, have a local paracrine RAS. Mutual regulation between the dopaminergic system and RAS has been observed in several tissues.

View Article and Find Full Text PDF

The brain renin-angiotensin system (RAS) has been related to dopaminergic degeneration, and high expression of the angiotensin II (AngII) type 1 receptor (AT1) gene is a marker of the most vulnerable neurons in humans. However, it is unknown whether AngII/AT1 overactivation affects α-synuclein aggregation and transmission. In vitro, AngII/AT1 activation increased α-synuclein aggregation in dopaminergic neurons and microglial cells, which was related to AngII-induced NADPH-oxidase activation and intracellular calcium raising.

View Article and Find Full Text PDF

Aims: According to Braak's hypothesis, it is plausible that Parkinson's disease (PD) originates in the enteric nervous system (ENS) and spreads to the brain through the vagus nerve. In this work, we studied whether inflammatory bowel diseases (IBDs) in humans can progress with the emergence of pathogenic α-synuclein (α-syn) in the gastrointestinal tract and midbrain dopaminergic neurons.

Methods: We have analysed the gut and the ventral midbrain from subjects previously diagnosed with IBD and form a DSS-based rat model of gut inflammation in terms of α-syn pathology.

View Article and Find Full Text PDF

Several studies showed an association between metabolic syndrome (MetS) and Parkinson's disease (PD). The linking mechanisms remain unclear. MetS promotes low-grade peripheral oxidative stress and inflammation and dysregulation of the adipose renin-angiotensin system (RAS).

View Article and Find Full Text PDF

Mammalian circadian clocks respond to feeding and light cues, adjusting internal rhythms with day/night cycles. Astrocytes serve as circadian timekeepers, driving daily physiological rhythms; however, it's unknown how they ensure precise cycle-to-cycle rhythmicity. This is critical for understanding why mistimed or erratic feeding, as in shift work, disrupts circadian physiology- a condition linked to type 2 diabetes and obesity.

View Article and Find Full Text PDF

Objective: Free fatty acid receptor-1 (FFAR1) is a medium- and long-chain fatty acid sensing G protein-coupled receptor that is highly expressed in the hypothalamus. Here, we investigated the central role of FFAR1 on energy balance.

Methods: Central FFAR1 agonism and virogenic knockdown were performed in mice.

View Article and Find Full Text PDF
Article Synopsis
  • * It utilizes a new method, MolBoolean, to analyze the interaction between these receptors in rats and monkeys, revealing that a high percentage of DR receptors interact with AR receptors, especially in a PD model.
  • * The findings suggest that the functioning of DR in certain neurons is regulated by AR, indicating potential benefits of using adenosine receptor blockers as an early treatment for Parkinson's disease.
View Article and Find Full Text PDF

Although neuromelanin is a dark pigment characteristic of dopaminergic neurons in the human substantia nigra pars compacta, its potential role in the pathogenesis of Parkinson's disease (PD) has often been neglected since most commonly used laboratory animals lack neuromelanin. Here we took advantage of adeno-associated viral vectors encoding the human tyrosinase gene for triggering a time-dependent neuromelanin accumulation within substantia nigra pars compacta dopaminergic neurons in macaques up to similar levels of pigmentation as observed in elderly humans. Furthermore, neuromelanin accumulation induced an endogenous synucleinopathy mimicking intracellular inclusions typically observed in PD together with a progressive degeneration of neuromelanin-expressing dopaminergic neurons.

View Article and Find Full Text PDF

Statins have been proposed for L-DOPA-induced dyskinesia (LID) treatment. Statin anti-dyskinetic effects were related to the inhibition of the Ras-ERK pathway. However, the mechanisms responsible for the anti-LID effect are unclear.

View Article and Find Full Text PDF

It is of particular interest the potential of cannabinoid and angiotensin receptors as targets in the therapy of Parkinson's disease (PD). While endocannabinoids are neuromodulators that act through the CB and CB cannabinoid receptors, the renin angiotensin-system is relevant for regulation of the correct functioning of several brain circuits. Resonance energy transfer assays in a heterologous system showed that the CB receptor (CBR) can directly interact with the angiotensin AT receptor (ATR).

View Article and Find Full Text PDF

The metabolic syndrome has been associated to chronic peripheral inflammation and related with neuroinflammation and neurodegeneration, including Parkinson's disease. However, the responsible mechanisms are unclear. Previous studies have involved the brain renin-angiotensin system in progression of Parkinson's disease and the angiotensin receptor type 1 (AT1) has been recently revealed as a major marker of dopaminergic vulnerability in humans.

View Article and Find Full Text PDF

Background And Aims: Leptin receptor (LEPR) deficiency promotes severe obesity and metabolic disorders. However, the current therapeutic options against this syndrome are scarce.

Methods: db/db mice and their wildtypes were systemically treated with neuronal-targeted small extracellular vesicles (sEVs) harboring a plasmid encoding a dominant negative mutant of AMP-activated protein kinase alpha 1 (AMPKα1-DN) driven by steroidogenic factor 1 (SF1) promoter; this approach allowed to modulate AMPK activity, specifically in SF1 cells of the ventromedial nucleus of the hypothalamus (VMH).

View Article and Find Full Text PDF

Parkinson's disease is a neurodegenerative condition characterized by motor impairments caused by the selective loss of dopaminergic neurons in the substantia nigra. Levodopa is an effective and well-tolerated dopamine replacement agent. However, levodopa provides only symptomatic improvements, without affecting the underlying pathology, and is associated with side effects after long-term use.

View Article and Find Full Text PDF

Background Age-associated aortic remodeling includes a marked increase in intimal medial thickness (IMT), associated with signs of inflammation. Although aortic wall milk fat globule-epidermal growth factor VIII (MFG-E8) increases with age, and is associated with aortic inflammation, it is not known whether MFG-E8 is for the age-associated increase in aortic IMT. Here, we tested whether MFG-E8 is for the age-associated increase in aortic IMT.

View Article and Find Full Text PDF

There are sex differences in microglia, which can maintain sex-related gene expression and functional differences in the absence of circulating sex steroids. The angiotensin type 2 (AT2) receptors mediate anti-inflammatory actions in different tissues, including brain. In mice, we performed RT-PCR analysis of microglia isolated from adult brains and RNA scope in situ hybridization from males, females, ovariectomized females, orchiectomized males and brain masculinized females.

View Article and Find Full Text PDF

© 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

View Article and Find Full Text PDF

The role of autoimmunity in neurodegeneration has been increasingly suggested. The renin-angiotensin system (RAS) autoantibodies play a major role in several peripheral inflammatory processes. Dysregulation of brain RAS has been involved in neuroinflammation and neurodegeneration.

View Article and Find Full Text PDF

Objective: We previously showed that angiotensin type-1 receptor and ACE2 autoantibodies (AT1-AA, ACE2-AA) are associated with COVID-19 severity. Our aim is to find correlations of these autoantibodies with routine biochemical parameters that allow an initial classification of patients.

Methods: In an initial cohort of 119 COVID-19 patients, serum AT1-AA and ACE2-AA concentrations were obtained within 24 h after diagnosis.

View Article and Find Full Text PDF