Compounds that mimic the biological properties of glycosaminoglycans (GAGs) and can be more easily prepared than the native GAG oligosaccharides are highly demanded. Here, we present the synthesis of sulfated oligosaccharides displaying a perfluorinated aliphatic tag at the reducing end as GAG mimetics. The preparation of these molecules was greatly facilitated by the presence of the fluorinated tail since the reaction intermediates were isolated by simple fluorous solid-phase extraction.
View Article and Find Full Text PDFGlycosaminoglycans (GAGs) are complex polysaccharides exhibiting a vast structural diversity and fulfilling various functions mediated by thousands of interactions in the extracellular matrix, at the cell surface, and within the cells where they have been detected in the nucleus. It is known that the chemical groups attached to GAGs and GAG conformations comprise "glycocodes" that are not yet fully deciphered. The molecular context also matters for GAG structures and functions, and the influence of the structure and functions of the proteoglycan core proteins on sulfated GAGs and vice versa warrants further investigation.
View Article and Find Full Text PDFPharmaceuticals (Basel)
April 2022
Chondroitin sulfate (CS) E is the natural ligand for pleiotrophin (PTN) in the central nervous system (CNS) of the embryo. Some structures of PTN in solution have been solved, but no precise location of the binding site has been reported yet. Using N-labelled PTN and HSQC NMR experiments, we studied the interactions with a synthetic CS-E tetrasaccharide corresponding to the minimum binding sequence.
View Article and Find Full Text PDFPleiotrophin (PTN) is a neurotrophic factor that participates in the development of the embryonic central nervous system (CNS) and neural stem cell regulation by means of an interaction with sulfated glycosaminoglycans (GAGs). Chondroitin sulfate (CS) is the natural ligand in the CNS. We have previously studied the complexes between the tetrasaccharides used here and MK (Midkine) by ligand-observed NMR techniques.
View Article and Find Full Text PDFThe classic, solution-phase synthesis of glycosaminoglycan (GAG) oligosaccharides is hampered by the numerous, time-consuming chromatographic purifications required for the isolation of the glycosylation products after each coupling step between sugar building blocks. Here, we present a detailed experimental procedure for a glycosylation reaction involving a glycosyl acceptor unit that is equipped with a perfluorinated tag. The presence of this fluorous tail allows the quick purification of the desired glycosylation product by performing a simple fluorous solid-phase extraction (F-SPE).
View Article and Find Full Text PDFLangerin is a C-type Lectin expressed at the surface of Langerhans cells, which play a pivotal role protecting organisms against pathogen infections. To address this aim, Langerin presents at least two recognition sites, one Ca-dependent and another one independent, which are capable to recognize a variety of carbohydrate ligands. In contrast to other lectins, Langerin recognizes sulfated glycosaminoglycans (GAGs), a family of complex and heterogeneous polysaccharides present in the cell membrane and the extracellular matrix, at the interphase generated in the trimeric form of Langerin but absent in the monomeric form.
View Article and Find Full Text PDFMidkine (MK) is a neurotrophic factor that participates in the embryonic central nervous system (CNS) development and neural stem cell regulation, interacting with sulfated glycosaminoglycans (GAGs). Chondroitin sulfate (CS) is the natural ligand in the CNS. In this work, we describe the interactions between a library of synthetic models of CS-types and mimics.
View Article and Find Full Text PDFThe preparation of chondroitin sulfate (CS) oligosaccharide mimetics, more easily synthesized than natural sequences, is a highly interesting task because these compounds pave the way for modulation of the biological processes in which CS is involved. Herein, we report the synthesis of CS type E analogues which present easily accessible glucose units instead of glucuronic acid (GlcA) moieties. NMR experiments and molecular dynamics simulations showed that the 3D structure of these compounds is similar to the structure of the natural CS-E oligosaccharides.
View Article and Find Full Text PDFHigh-mannose (ManGlcNAc) is the main carbohydrate unit present in viral envelope glycoproteins such as gp120 of HIV and the GP1 of Ebola virus. This oligosaccharide comprises the Man epitope conjugated to two terminal N-acetylglucosamines by otherwise rarely-encountered β-mannose glycosidic bond. Formation of this challenging linkage is the bottleneck of the few synthetic approaches described to prepare high mannose.
View Article and Find Full Text PDFChondroitin sulfate type-E (CS-E) is a sulfated polysaccharide that shows several interesting biological activities, such as modulation of the neuronal growth factor signaling and its interaction with langerin, a C-type lectin with a crucial role in the immunological system. However, applications of CS-E are hampered by the typical heterogeneous structure of the natural polysaccharide. Well-defined, homogeneous CS-E analogues are highly demanded.
View Article and Find Full Text PDFHere, we report the synthesis of a sulfated, fully protected hexasaccharide as a glycosaminoglycan mimetic and the study of its interactions with different growth factors: midkine, basic fibroblast growth factor (FGF-2) and nerve growth factor (NGF). Following a fluorous-assisted approach, monosaccharide building blocks were successfully assembled and the target oligosaccharide was prepared in excellent yield. The use of more acid stable 4,6--silylidene protected glucosamine units was crucial for the efficiency of this strategy because harsh reaction conditions were needed in the glycosylations to avoid the formation of orthoester side products.
View Article and Find Full Text PDFHere, we present an exploratory study on the fluorous-assisted synthesis of chondroitin sulfate (CS) oligosaccharides. Following this approach, a CS tetrasaccharide was prepared. However, in contrast to our previous results, a significant loss of β-selectivity was observed in [2 + 2] glycosylations involving -trifluoroacetyl-protected D-galactosamine donors and D-glucuronic acid (GlcA) acceptors.
View Article and Find Full Text PDFHere, we present the preparation of a sulfated, fully protected tetrasaccharide derivative following the glycosaminoglycan (GAG)-related sequence GlcNAc-β(1 → 4)-Glc-β(1 → 3). The tetramer was efficiently assembled via an iterative glycosylation strategy using monosaccharide building blocks. A fluorous tag was attached at position 6 of the reducing end unit enabling the purification of reaction intermediates by simple fluorous solid phase extraction.
View Article and Find Full Text PDFFGF-1 is a potent mitogen that, by interacting simultaneously with Heparan Sulfate Glycosaminoglycan HSGAG and the extracellular domains of its membrane receptor (FGFR), generates an intracellular signal that finally leads to cell division. The overall structure of the ternary complex Heparin:FGF-1:FGFR has been finally elucidated after some controversy and the interactions within the ternary complex have been deeply described. However, since the structure of the ternary complex was described, not much attention has been given to the molecular basis of the interaction between FGF-1 and the HSGAG.
View Article and Find Full Text PDFChondroitin sulfate (CS) is a member of the glycosaminoglycan (GAG) family, a class of polysaccharides implicated in relevant biological functions. The structural complexity of these carbohydrates demands the development of simple glycomimetics as useful tools to study the biological processes in which GAGs are involved. In this work we described the synthesis of the disaccharide unit of the CS-E (GlcA-GalNAc(4,6-di-OSO )), in a multivalent presentation.
View Article and Find Full Text PDFThe adaptation of existing antimalarial nanocarriers to new Plasmodium stages, drugs, targeting molecules, or encapsulating structures is a strategy that can provide new nanotechnology-based, cost-efficient therapies against malaria. We have explored the modification of different liposome prototypes that had been developed in our group for the targeted delivery of antimalarial drugs to Plasmodium-infected red blood cells (pRBCs). These new models include: (i) immunoliposome-mediated release of new lipid-based antimalarials; (ii) liposomes targeted to pRBCs with covalently linked heparin to reduce anticoagulation risks; (iii) adaptation of heparin to pRBC targeting of chitosan nanoparticles; (iv) use of heparin for the targeting of Plasmodium stages in the mosquito vector; and (v) use of the non-anticoagulant glycosaminoglycan chondroitin 4-sulfate as a heparin surrogate for pRBC targeting.
View Article and Find Full Text PDFThe biological activity of midkine, a cytokine implicated in neuro- and tumourigenesis, is regulated by its binding to glycosaminoglycans (GAGs), such as heparin and chondroitin sulfate (CS). To better understand the molecular recognition of GAG sequences by this growth factor, the interactions between synthetic chondroitin sulfate-like tetrasaccharides and midkine were studied by using different techniques. Firstly, a synthetic approach for the preparation of CS-like oligosaccharides in the sequence GalNAc-GlcA was developed.
View Article and Find Full Text PDFLangerin is a C-type lectin present on Langerhans cells that mediates capture of pathogens in a carbohydrate-dependent manner, leading to subsequent internalization and elimination in the cellular organelles called Birbeck granules. This mechanism mediated by langerin was shown to constitute a natural barrier for HIV-1 particle transmission. Besides interacting specifically with high mannose and fucosylated neutral carbohydrate structures, langerin has the ability to bind sulfated carbohydrate ligands as 6-sulfated galactosides in the Ca(2+)-dependent binding site.
View Article and Find Full Text PDFHeparin-like saccharides play an essential role in binding to the fibroblast growth factor (FGF)-1 and to their membrane receptors fibroblast growth factor receptor forming a ternary complex that is responsible of the internalization of the signal, via the dimerization of the intracellular regions of the receptor. In this study, we report the binding affinities between five synthetic hexasaccharides with human FGF-1 obtained by surface plasmon resonance experiments, and compare with the induced mitogenic activity previously obtained. These five oligosaccharides differ in sulfation pattern and in sequence.
View Article and Find Full Text PDFThe synthesis of hyaluronic acid oligomers (tri- and tetrasaccharide) is described. We have followed a pre-glycosylation oxidation strategy. Glucuronic acid units were directly employed in coupling reactions with suitably protected glucosamine derivatives.
View Article and Find Full Text PDFThe motional behaviour of heparin oligosaccharides in solution is best described as a top rotor having two perpendicular rotation axes. This prevents an accurate extraction of interprotonic distances by NOESY/ROESY based methods. In this paper, we describe the solution structure of the hexasaccharide 1 calculated from high exactitude distance data obtained from off-resonance ROESY combined with a long MD simulation of 500 ns.
View Article and Find Full Text PDFThe polyconformational behavior of L-iduronic acid (L-IdoA2S) in heparin derivatives has been previously analyzed in terms of intra-ring proton-proton vicinal coupling constants ((3)JHH) through mathematical fit of experimental and theoretical values (Ferro DR, Provasoli A, Ragazzi M, Casu B, Torri G, Bossennec V, Perly B, Sinay P, Petitou M, Choay J. 1990. Conformer Populations of L-Iduronic Acid Residues in Glycosaminoglycan Sequences.
View Article and Find Full Text PDFHere, we present a novel approach for the chemical synthesis of chondroitin and dermatan sulfate oligosaccharides. A key point of this strategy is the preparation and use of an N-trifluoroacetyl galactosamine building block containing a 4,6-O-di-tert-butylsilylene group. Glycosylation reactions proceeded in good yields (74-91%) with our protecting group distribution.
View Article and Find Full Text PDFBased on the structure of the regular heparin, we have prepared a smart library of heparin-like trisaccharides by incorporating some sulfate groups in the sequence α-D-GlcNS- (1-4)-α-L-Ido2S-(1-4)-α-D-GlcN. According to the 3D structure of heparin, which features one helix turn every four residues, this fragment corresponds to the minimum binding motif. We have performed a complete NMR study and found that the trisaccharides have a similar 3D structure to regular heparin itself, but their spectral properties are such that allow to extract very detailed information about distances and coupling constants as they are isotropic molecules.
View Article and Find Full Text PDFProtein-glycosaminoglycan interactions are essential in many biological processes and human diseases, yet how their recognition occurs is poorly understood. Eosinophil cationic protein (ECP) is a cytotoxic ribonuclease that interacts with glycosaminoglycans at the cell surface; this promotes the destabilization of the cellular membrane and triggers ECP's toxic activity. To understand this membrane destabilization event and the differences in the toxicity of ECP and its homologues, the high resolution solution structure of the complex between full length folded ECP and a heparin-derived trisaccharide (O-iPr-α-D-GlcNS6S-α(1-4)-L-IdoA2S-α(1-4)-D-GlcNS6S) has been solved by NMR methods and molecular dynamics simulations.
View Article and Find Full Text PDF