Publications by authors named "Jose Javier Serrano Olmedo"

Chronic kidney disease (CKD) is a global public health problem, with adverse outcomes of kidney failure, cardiovascular disease (CVD), and premature death. According to European Kidney Health Alliance (EKHA) currently, 1 in 10 Europeans has chronic kidney disease (CKD) and it is predicted to be the fifth leading cause of death worldwide by 2040. The COVID-19, pandemic has further worsened the situation, with CKD being the number one risk factor for CKD mortality, ahead of lung and heart disease.

View Article and Find Full Text PDF

Magnetic hyperthermia (MHT) is an oncological therapy that uses magnetic nanoparticles (MNPs) to generate localized heat under a low-frequency alternating magnetic field (AMF). Recently, trapezoidal pulsed alternating magnetic fields (TPAMFs) have proven their efficacy in enhancing the efficiency of heating in MHT as compared to the sinusoidal one. Our study aims to compare the TPAMF waveform's killing effect against the sinusoidal waveform in B16F10 and CT2A cell lines to determine more efficient waveforms in causing cell death.

View Article and Find Full Text PDF

In rehabilitating orientation and mobility (O&M) for visually impaired people (VIP), the measurement of spatio-temporal gait and postural parameters is of specific interest for rehabilitators to assess performance and improvements in independent mobility. In the current practice of rehabilitation worldwide, this assessment is carried out in people with estimates made visually. The objective of this research was to propose a simple architecture based on the use of wearable inertial sensors for quantitative estimation of distance traveled, step detection, gait velocity, step length and postural stability.

View Article and Find Full Text PDF

The synovial fluid (SF) analysis involves a series of chemical and physical studies that allow opportune diagnosing of septic, inflammatory, non-inflammatory, and other pathologies in joints. Among the variety of analyses to be performed on the synovial fluid, the study of viscosity can help distinguish between these conditions, since this property is affected in pathological cases. The problem with viscosity measurement is that it usually requires a large sample volume, or the necessary instrumentation is bulky and expensive.

View Article and Find Full Text PDF

Hydrogel biomaterials have found use in various biomedical applications partly due to their biocompatibility and tuneable viscoelastic properties. The ideal rheological properties of hydrogels depend highly on the application and should be considered early in the design process. Rheometry is the most common method to study the viscoelastic properties of hydrogels.

View Article and Find Full Text PDF

Deep learning (DL) models are very useful for human activity recognition (HAR); these methods present better accuracy for HAR when compared to traditional, among other advantages. DL learns from unlabeled data and extracts features from raw data, as for the case of time-series acceleration. Sliding windows is a feature extraction technique.

View Article and Find Full Text PDF

For decades now, conventional sinusoidal signals have been exclusively used in magnetic hyperthermia as the only alternating magnetic field waveform to excite magnetic nanoparticles. However, there are no theoretical nor experimental reasons that prevent the use of different waveforms. The only justifiable motive behind using the sinusoidal signal is its availability and the facility to produce it.

View Article and Find Full Text PDF

The rehabilitation of a visually impaired person (VIP) is a systematic process where the person is provided with tools that allow them to deal with the impairment to achieve personal autonomy and independence, such as training for the use of the long cane as a tool for orientation and mobility (O&M). This process must be trained personally by specialists, leading to a limitation of human, technological and structural resources in some regions, especially those with economical narrow circumstances. A system to obtain information about the motion of the long cane and the leg using low-cost inertial sensors was developed to provide an overview of quantitative parameters such as sweeping coverage and gait analysis, that are currently visually analyzed during rehabilitation.

View Article and Find Full Text PDF

A diverse array of assistive technologies have been developed to help Visually Impaired People (VIP) face many basic daily autonomy challenges. Inertial measurement unit sensors, on the other hand, have been used for navigation, guidance, and localization but especially for full body motion tracking due to their low cost and miniaturization, which have allowed the estimation of kinematic parameters and biomechanical analysis for different field of applications. The aim of this work was to present a comprehensive approach of assistive technologies for VIP that include inertial sensors as input, producing results on the comprehension of technical characteristics of the inertial sensors, the methodologies applied, and their specific role in each developed system.

View Article and Find Full Text PDF

Viscosity variation in human fluids, such as Synovial Fluid (SF) or Cerebrospinal Fluid (CSF), can be used as a diagnostic factor; however, the sample volume obtained for analysis is usually small, making it difficult to measure its viscosity. On the other hand, Quartz Crystal Resonators (QCR) have been used widely in sensing applications due to their accuracy, cost, and size. This work provides the design and validation of a new viscosity measurement system based on quartz crystal resonators for low volume fluids, leading to the development of a sensor called "ViSQCT" as a prototype for a new medical diagnostic tool.

View Article and Find Full Text PDF
Article Synopsis
  • * There's a need for better understanding, management, and support for patients to improve their quality of life and reduce the economic impact of these diseases.
  • * The development of databases for patient data and technological innovations is crucial for enhancing diagnosis, treatment consensus, and the efficiency of clinical trials, alongside the formation of expert communities for collaboration.
View Article and Find Full Text PDF

Metallic nanorods are promising agents for a wide range of biomedical applications. We report an optical hyperthermia method capable of inducing slowdown tumor progression of an experimental in vivo CT-2A glioblastoma tumor. The tumor model used in this research is based on the transplantation of mouse astrocytoma CT-2A cells in the striatum of mice by intracranial stereotaxic surgery.

View Article and Find Full Text PDF

Biomedical applications based on the magnetic properties of superparamagnetic iron oxide nanoparticles (SPIONs) may be altered by the mechanical attachment or cellular uptake of these nanoparticles. When nanoparticles interact with living cells, they are captured and internalized into intracellular compartments. Consequently, the magnetic behavior of the nanoparticles is modified.

View Article and Find Full Text PDF

The main objective of this article is to demonstrate through experimental means the capacity of the quartz crystal resonator (QCR) to characterize biological samples of aqueous dilutions of hyaluronic acid according to their viscosity and how this capacity may be useful in the potential diagnosis of arthritic diseases. The synovial fluid is viscous due to the presence of hyaluronic acid, synthesized by synovial lining cells (type B), and secreted into the synovial fluid thus making the fluid viscous. In consequence, aqueous dilutions of hyaluronic acid may be used as samples to emulate the synovial fluid.

View Article and Find Full Text PDF

Optical hyperthermia systems based on the laser irradiation of gold nanorods seem to be a promising tool in the development of therapies against cancer. After a proof of concept in which the authors demonstrated the efficiency of this kind of systems, a modeling process based on an equivalent thermal-electric circuit has been carried out to determine the thermal parameters of the system and an energy balance obtained from the time-dependent heating and cooling temperature curves of the irradiated samples in order to obtain the photothermal transduction efficiency. By knowing this parameter, it is possible to increase the effectiveness of the treatments, thanks to the possibility of predicting the response of the device depending on the working configuration.

View Article and Find Full Text PDF

When aqueous suspensions of gold nanorods are irradiated with a pulsing laser (808 nm), pressure waves appear even at low frequencies (pulse repetition rate of 25 kHz). We found that the pressure wave amplitude depends on the dynamics of the phenomenon. For fixed concentration and average laser current intensity, the amplitude of the pressure waves shows a trend of increasing with the pulse slope and the pulse maximum amplitude.

View Article and Find Full Text PDF

Background: Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells.

Methods: The procedure used was based on irradiation of gold nanorods with a continuous wave laser.

View Article and Find Full Text PDF