Publications by authors named "Jose J Morales-Nunez"

Systemic sclerosis (SSc) is characterized by a complex interplay of vascular damage, inflammation, and fibrosis, affecting the skin and internal organs. Plasminogen activator inhibitor-1 (PAI-1), a protein encoded by the gene, is a potential biomarker of SSc because it is primarily involved in fibrinolysis and is associated with the severity of some autoimmune diseases. This study aimed to determine the association between variant -675 4G/5G and soluble PAI-1 (sPAI-1) levels with the clinical characteristics and risk of SSc in a Mexican population.

View Article and Find Full Text PDF

During the COVID-19 pandemic, the Ad5-nCoV vaccine was applied to the Mexican population before the WHO approved it. In a transversal study, we compare the CanSino vaccine efficacy and a natural SARS-CoV-2 infection in eliciting neutralizing antibodies against the SARS-CoV-2 Delta variant in Guadalajara, Mexico. Participants between 30-60 years were included in the study and classified into three groups: 1) Natural immunity (unvaccinated), 2) Vaccine-induced immunity (vaccinated individuals without a COVID-19 history), and 3) Natural immunity + vaccine-induced immunity.

View Article and Find Full Text PDF

Few studies analyze the role of B-cell subpopulations in rheumatoid arthritis (RA) pathophysiology. Therefore, this study aimed to analyze the differences in B-cell subpopulations and B-cell activation according to disease activity, RA subtype, and absence of disease-modifying antirheumatic drugs (DMARDs) therapy. These subgroups were compared with control subjects (CS).

View Article and Find Full Text PDF

This study aimed to analyze the dynamics, duration, and production of total and neutralizing antibodies induced by the BNT162b2 vaccine and the possible effect of gender and prior SARS-CoV-2 infection on the generation of these antibodies. Total antibodies were quantified via chemiluminescent microparticle immunoassay (CMIA), and neutralizing antibodies were quantified using the cPass SARS-CoV-2 kit. Individuals with a history of COVID-19 produced twice as many antibodies than vaccinated individuals without prior SARS-CoV-2 infection, with an exponential increase observed in just six days.

View Article and Find Full Text PDF

Neutralizing antibodies (NAbs) can be indicators of collective immunity, vaccine efficacy, and the longevity of the humoral response. This study aimed to compare reactogenicity and NAbs generated by three different COVID-19 vaccine platforms in individuals with and without prior COVID-19. 336 individuals vaccinated (112 with CoronaVac [inactivated virus], 112 with BNT162b2 [messenger RNA], and 112 with Ad5-nCoV [non-replicating viral vector]) were included.

View Article and Find Full Text PDF

Purpose: Understanding the humoral immune response dynamics carried out by B cells in COVID-19 vaccination is little explored; therefore, we analyze the changes induced in the different cellular subpopulations of B cells after vaccination with BNT162b2 (Pfizer-BioNTech).

Methods: This prospective cohort study evaluated thirty-nine immunized health workers (22 with prior COVID-19 and 17 without prior COVID-19) and ten subjects not vaccinated against SARS-CoV-2 (control group). B cell subpopulations (transitional, mature, naïve, memory, plasmablasts, early plasmablast, and double-negative B cells) and neutralizing antibody levels were analyzed and quantified by flow cytometry and ELISA, respectively.

View Article and Find Full Text PDF

The antibody response to respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Neutralizing antibody (NAb) evaluations are useful for the determination of individual or herd immunity against SARS-CoV-2, vaccine efficacy, and humoral protective response longevity, as well as supporting donor selection criteria for convalescent plasma therapy. In the current manuscript, we review the essential concepts of NAbs, examining their concept, mechanisms of action, production, and the techniques used for their detection; as well as presenting an overview of the clinical use of antibodies in COVID-19.

View Article and Find Full Text PDF

This is the first study outside of clinical trials (phase I-III) evaluating the ability of the Ad5-nCoV vaccine to generate neutralizing antibodies and the factors associated with optimal or suboptimal response. In a longitudinal assay, 346 people (117 with prior COVID-19 and 229 without prior COVID-19) vaccinated with Ad5-nCoV were recruited. The percentage of neutralizing antibodies against SARS-CoV-2 (Surrogate Virus Neutralization Test) and antibodies against Ad5 (ADV-Ad5 IgG ELISA) were quantified pre and post-vaccination effects.

View Article and Find Full Text PDF

The main expected result of a vaccine against viruses is the ability to produce neutralizing antibodies. Currently, several vaccines against SARS-CoV-2 are being applied to prevent mortal complications, being Pfizer-BioNTech (BNT162b2) one of the first to be authorized in the USA and Mexico (11 December 2020). This study evaluated the efficacy of this vaccine on antibody production with neutralizing capacity and its side effects in healthcare workers with and without prior SARS-CoV-2 infection and in a group of unvaccinated individuals with prior COVID-19.

View Article and Find Full Text PDF

Background: Metabolic syndrome (MetS) prevalence in rheumatoid arthritis (RA) patients is known to vary considerably across the world. This study aimed to determine the prevalence of MetS in RA patients from western Mexico and to analyze the interrelation of the MetS components with the clinical variables of RA.

Methods: This case-control study included 216 RA patients and 260 control subjects (CS).

View Article and Find Full Text PDF