A breeding strategy combining genomic with one-stage phenotypic selection maximizes annual selection gain for net merit. Choice of the selection index strongly affects the selection gain expected in individual traits. Selection indices using genomic information have been proposed in crop-specific scenarios.
View Article and Find Full Text PDFBackground: Quantitative traits are common in nature, but quantitative pathogenicity has received only little attention in phytopathology. In this study, we used 100 Fusarium culmorum isolates collected from natural field environments to assess their variation for two quantitative traits, aggressiveness and deoxynivalenol (DON) production on wheat plants grown in four different field environments (location-year combinations). Seventeen Fusarium graminearum pathogenicity candidate genes were assessed for their effect on the aggressiveness and DON production of F.
View Article and Find Full Text PDFA breeding strategy with moderate nursery selection followed by genomic selection and one-stage phenotypic selection maximizes annual selection gain for grain yield across a wide range of hybrid breeding scenarios. Genomic selection (GS) is a promising method for the selection of quantitatively inherited traits but its most effective implementation in routine hybrid breeding schemes requires further research. We compared five breeding strategies and varied their available budget, the costs for doubled haploid (DH) line and hybrid seed production as well as variance components for grain yield in a wide range.
View Article and Find Full Text PDF