We have generated using CRISPR/Cas9 technology a partially humanized mouse model of the neurometabolic disease phenylketonuria (PKU), carrying the highly prevalent PAH variant c.1066-11G>A. This variant creates an alternative 3' splice site, leading to the inclusion of 9 nucleotides coding for 3 extra amino acids between Q355 and Y356 of the protein.
View Article and Find Full Text PDFObjective: Posttranscriptional mechanisms are increasingly recognized as important contributors to the formation of hyperexcitable networks in epilepsy. Messenger RNA (mRNA) polyadenylation is a key regulatory mechanism governing protein expression by enhancing mRNA stability and translation. Previous studies have shown large-scale changes in mRNA polyadenylation in the hippocampus of mice during epilepsy development.
View Article and Find Full Text PDFHuntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HTT gene for which no therapies are available. HTT mutation causes protein misfolding and aggregation, preferentially affecting medium spiny neurons (MSNs) of the basal ganglia. Transcriptional perturbations in synaptic genes and neuroinflammation are key processes that precede MSN dysfunction and motor symptom onset.
View Article and Find Full Text PDFThe aim of the study was to investigate the intramuscular pharmacokinetics of enrofloxacin in black vultures (). The pharmacokinetics of a single intramuscular dose (10 mg/kg) of enrofloxacin was studied in six vultures. Plasma concentrations of enrofloxacin and its active metabolite, ciprofloxacin, were determined by high-performance liquid chromatography (HPLCuv).
View Article and Find Full Text PDFTauopathies, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with Tau pathology (FTLD-tau), are a group of neurodegenerative disorders characterized by Tau hyperphosphorylation. Post-translational modifications of Tau such as phosphorylation and truncation have been demonstrated to be an essential step in the molecular pathogenesis of these tauopathies. In this work, we demonstrate the existence of a new, human-specific truncated form of Tau generated by intron 12 retention in human neuroblastoma cells and, to a higher extent, in human RNA brain samples, using qPCR and further confirming the results on a larger database of human RNA-seq samples.
View Article and Find Full Text PDFThe huntingtin (HTT) protein transports various organelles, including vesicles containing neurotrophic factors, from embryonic development throughout life. To better understand how HTT mediates axonal transport and why this function is disrupted in Huntington's disease (HD), we study vesicle-associated HTT and find that it is dimethylated at a highly conserved arginine residue (R118) by the protein arginine methyltransferase 6 (PRMT6). Without R118 methylation, HTT associates less with vesicles, anterograde trafficking is diminished, and neuronal death ensues-very similar to what occurs in HD.
View Article and Find Full Text PDFTetracyclines are antibiotics widely used in human and veterinary medicine. Effects on the immune system and inflammatory response, including effects on blood leukocytes proliferation and function and in cytokines synthesis, have been described. Chemically modified tetracyclines (CMT) have lost their antimicrobial activity, but maintain these other properties.
View Article and Find Full Text PDFPrion diseases are a group of neurodegenerative disorders that can be spontaneous, familial or acquired by infection. The conversion of the prion protein PrP to its abnormal and misfolded isoform PrP is the main event in the pathogenesis of prion diseases of all origins. In spontaneous prion diseases, the mechanisms that trigger the formation of PrP in the central nervous system remain unknown.
View Article and Find Full Text PDFThe aim of this study was to determine the pharmacokinetic parameters of doxycycline in dogs and assess the efficacy of an oral drug dosage regimen of 10 mg/kg daily for 28 days through Pharmacokinetic/Pharmacodynamic (PK/PD) target analysis based on Monte Carlo simulation, using previously published data for the zoonotic pathogen Staphylococcus pseudintermedius. After a multiple-dosage regimen, the accumulation index was 1.88 ± 0.
View Article and Find Full Text PDFObjective: Pharmacoresistance and the lack of disease-modifying actions of current antiseizure drugs persist as major challenges in the treatment of epilepsy. Experimental models of chemoconvulsant-induced status epilepticus remain the models of choice to discover potential antiepileptogenic drugs, but doubts remain as to the extent to which they model human pathophysiology. The aim of the present study was to compare the molecular landscape of the intra-amygdala kainic acid model of status epilepticus in mice with findings in resected brain tissue from patients with drug-resistant temporal lobe epilepsy (TLE).
View Article and Find Full Text PDFTemporal lobe epilepsy is the most common and refractory form of epilepsy in adults. Gene expression within affected structures such as the hippocampus displays extensive dysregulation and is implicated as a central pathomechanism. Post-transcriptional mechanisms are increasingly recognized as determinants of the gene expression landscape, but key mechanisms remain unexplored.
View Article and Find Full Text PDFHuntington's disease and X-linked dystonia parkinsonism are two monogenic basal ganglia model diseases. Huntington's disease is caused by a polyglutamine-encoding CAG repeat expansion in the Huntingtin (HTT) gene leading to several toxic interactions of both the expanded CAG-containing mRNA and the polyglutamine-containing protein, while X-linked dystonia parkinsonism is caused by a retrotransposon insertion in the TAF1 gene, which decreases expression of this core scaffold of the basal transcription factor complex TFIID. SRSF6 is an RNA-binding protein of the serine and arginine-rich (SR) protein family that interacts with expanded CAG mRNA and is sequestered into the characteristic polyglutamine-containing inclusion bodies of Huntington's disease brains.
View Article and Find Full Text PDFFront Cell Neurosci
January 2020
Since the early reports of neurofibrillary Tau pathology in brains of some Huntington's disease (HD) patients, mounting evidence of multiple alterations of Tau in HD brain tissue has emerged in recent years. Such Tau alterations range from increased total levels, imbalance of isoforms generated by alternative splicing (increased 4R-/3R-Tau ratio) or by post-translational modifications such as hyperphosphorylation or truncation. Besides, the detection in HD brains of a new Tau histopathological hallmark known as Tau nuclear rods (TNRs) or Tau-positive nuclear indentations (TNIs) led to propose HD as a secondary Tauopathy.
View Article and Find Full Text PDFObjective: To determine the pharmacokinetics of enrofloxacin after IV administration in American black vultures , to compare clearance of enrofloxacin in American black vultures with clearance of this fluoroquinolone in other avian species, and to evaluate whether allometric scaling is an appropriate tool for dose extrapolation in avian species.
Animals: 6 healthy adult American black vultures.
Procedures: Enrofloxacin concentrations were quantified by use of high-performance liquid chromatography.
Int J Physiol Pathophysiol Pharmacol
December 2018
Tauopathies are a group of neurodegenerative diseases characterized by the pathological aggregation of the microtubule-associated protein tau. These include more than 20 diseases, with Alzheimer's disease being the most frequent. While pathological and neurotoxic effects of tau are well documented, the mechanisms by which tau can promote neurodegeneration are less clear.
View Article and Find Full Text PDFGlycogen synthase kinase-3 (GSK-3) is ubiquitously expressed throughout the brain and involved in vital molecular pathways such as cell survival and synaptic reorganization and has emerged as a potential drug target for brain diseases. A causal role for GSK-3, in particular the brain-enriched GSK-3β isoform, has been demonstrated in neurodegenerative diseases such as Alzheimer's and Huntington's, and in psychiatric diseases. Recent studies have also linked GSK-3 dysregulation to neuropathological outcomes in epilepsy.
View Article and Find Full Text PDF