Publications by authors named "Jose J Garcia-Ramirez"

Macrophage activation is a complex process with multiple control elements that ensures an adequate response to the aggressor pathogens and, on the other hand, avoids an excess of inflammatory activity that could cause tissue damage. In this study, we have identified RND3, a small GTP-binding protein, as a new element in the complex signaling process that leads to macrophage activation. We show that RND3 expression is transiently induced in macrophages activated through Toll receptors and potentiated by IFN-.

View Article and Find Full Text PDF

IL-13 signaling polarizes macrophages to an M2 alternatively activated phenotype, which regulates tissue repair and anti-inflammatory responses. However, an excessive activation of this pathway leads to severe pathologies, such as allergic airway inflammation and asthma. In this work, we identified NOTCH4 receptor as an important modulator of M2 macrophage activation.

View Article and Find Full Text PDF

NOTCH4 is a member of the NOTCH family of receptors whose expression is intensively induced in macrophages after their activation by Toll-like receptors (TLR) and/or interferon-γ (IFN-γ). In this work, we show that this receptor acts as a negative regulator of macrophage activation by diminishing the expression of proinflammatory cytokines, such as IL-6 and IL-12, and costimulatory proteins, such as CD80 and CD86. We have observed that NOTCH4 inhibits IFN-γ signaling by interfering with STAT1-dependent transcription.

View Article and Find Full Text PDF

Macrophage activation by Toll receptors is an essential event in the development of the response against pathogens. NOTCH signaling pathway is involved in the control of macrophage activation and the inflammatory processes. In this work, we have characterized NOTCH signaling in macrophages activated by Toll-like receptor (TLR) triggering and determined that DLL1 and DLL4 are the main ligands responsible for NOTCH signaling.

View Article and Find Full Text PDF

Inhibition of Notch signalling in T cells attenuates the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Growing evidence indicates that myeloid cells are also key players in autoimmune processes. Thus, the present study evaluates the role of the Notch1 receptor in myeloid cells on the progression of myelin oligodendrocyte glycoprotein (MOG) -induced EAE, using mice with a myeloid-specific deletion of the Notch1 gene (MyeNotch1KO).

View Article and Find Full Text PDF

Delta-like 1 homolog (DLK1) is an imprinted gene, which is widely expressed during mammalian development and plays a pivotal role in differentiation of various tissue types. Most recently, we have shown that DLK1 interacts with NOTCH1, yet several Notch independent mechanisms have previously been suggested as well, but only poorly confirmed in a mammalian context. In the present study, we employed the mammalian two-hybrid (MTH) system, a genetic in vivo protein-protein interaction system, to show robust DLK1-DLK1, DLK1-FnI (Fibronectin) and DLK1-CFR (cysteine-rich FGF receptor) interactions, whereas the proposed DLK1-IGFBP1 interaction was not supported by MTH.

View Article and Find Full Text PDF

The involvement of NOTCH signaling in macrophage activation by Toll receptors has been clearly established, but the factors and pathways controlling NOTCH signaling during this process have not been completely delineated yet. We have characterized the role of TSPAN33, a tetraspanin implicated in a disintegrin and metalloproteinase (ADAM) 10 maturation, during macrophage proinflammatory activation. Tspan33 expression increases in response to TLR signaling, including responses triggered by TLR4, TLR3, and TLR2 activation, and it is enhanced by IFN-γ.

View Article and Find Full Text PDF

The epidermal growth factor-like protein DLK2, highly homologous to DLK1, has been identified as a modulator of adipogenesis in vitro. Knocking down Dlk2 expression prevents adipogenesis of 3T3-L1 cells but enhances that of the mesenchymal cell line C3H10T1/2. The expression of Dlk2 shows two peaks along this differentiation process: the first one, in response to 3-isobutyl-1-methylxanthine (IBMX) and dexamethasone (Dex), and the second, shortly after exposure to insulin.

View Article and Find Full Text PDF

Background: DLK2 is an EGF-like membrane protein, closely related to DLK1, which is involved in adipogenesis. Both proteins interact with the NOTCH1 receptor and are able to modulate its activation. The expression of the gene Dlk2 is coordinated with that of Dlk1 in several tissues and cell lines.

View Article and Find Full Text PDF

The global transcriptional program of murine cytomegalovirus (MCMV), involving coding, noncoding, and antisense transcription, remains unknown. Here we report an oligonucleotide custom microarray platform capable of measuring both coding and noncoding transcription on a genome-wide scale. By profiling MCMV wild-type and immediate-early mutant strains in fibroblasts, we found rapid activation of the transcriptome by 6.

View Article and Find Full Text PDF

The protein DLK2, highly homologous to DLK1, belongs to the EGF-like family of membrane proteins, which includes NOTCH receptors and their DSL-ligands. The molecular mechanisms by which DLK proteins regulate cell differentiation and proliferation processes are not fully established yet. In previous reports, we demonstrated that DLK1 interacts with itself and with specific EGF-like repeats of the NOTCH1 extracellular region involved in the binding to NOTCH1 canonical ligands.

View Article and Find Full Text PDF

Macrophages present different Notch receptors and ligands on their surface. Following macrophage activation by LPS or other TLR ligands, Notch1 expression is upregulated. We report here that Notch signaling increases both basal and LPS-induced NF-kappaB activation, favoring the expression of genes implicated in the inflammatory response, such as the cytokines TNF-alpha and IL-6, or enzymes, such as iNOS.

View Article and Find Full Text PDF

dlk1 is an epidermal growth factor (EGF)-like homeotic protein containing an intracellular region, a single transmembrane domain, and an extracellular region possessing six EGF-like repeats and a protease-target sequence. dlk1 functions as a modulator of adipogenesis, and other differentiation processes. The molecular mechanisms by which dlk1 regulates these processes are unclear.

View Article and Find Full Text PDF

Background: The Dlk1 gene encodes for dlk1, a transmembrane protein belonging to the EGF-like repeat-containing family. Dlk1 has been shown to act as a regulator of adipogenesis. Fc-dlk1 transgenic mice show a decrease in adipose tissue and glucose tolerance, hypertriglyceridaemia and lower insulin sensitivity.

View Article and Find Full Text PDF

Notch signaling has been extensively implicated in cell-fate determination along the development of the immune system. However, a role for Notch signaling in fully differentiated immune cells has not been clearly defined. We have analyzed the expression of Notch protein family members during macrophage activation.

View Article and Find Full Text PDF

The protein dlk, encoded by the Dlk1 gene, belongs to the Notch epidermal growth factor (EGF)-like family of receptors and ligands, which participate in cell fate decisions during development. The molecular mechanisms by which dlk regulates cell differentiation remain unknown. By using the yeast two-hybrid system, we found that dlk interacts with Notch1 in a specific manner.

View Article and Find Full Text PDF

The murine gammaherpesvirus-68 genome encodes 73 protein-coding open reading frames with extensive similarities to human gamma(2) herpesviruses, as well as unique genes and cellular homologues. We performed transcriptome analysis of stage-specific viral RNA during permissive infection using an oligonucleotide-based microarray. Using this approach, M4, K3, ORF38, ORF50, ORF57 and ORF73 were designated as immediate-early genes based on cycloheximide treatment.

View Article and Find Full Text PDF