Publications by authors named "Jose J De Vega-Bartol"

The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f.

View Article and Find Full Text PDF

Background: It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation.

View Article and Find Full Text PDF

Suitable internal control genes to normalize qPCR data from different stages of embryo development and germination were identified in two representative conifer species. Clonal propagation by somatic embryogenesis has a great application potentiality in conifers. Quantitative PCR (qPCR) is widely used for gene expression analysis during somatic embryogenesis and embryo germination.

View Article and Find Full Text PDF

We have identified a Fusarium oxysporum homolog of the Ste12 transcription factor that regulates mating and filamentation in Saccharomyces cerevisiae. The corresponding gene, fost12, from a highly virulent strain of F. oxysporum f.

View Article and Find Full Text PDF