Glucose-derived carbon/carbon nanotube (CNT) hybrid materials were prepared by hydrothermal carbonization of glucose in the presence of CNTs and subsequent carbonization, physical activation, or chemical activation. The proportion of CNTs added during the hydrothermal polymerization of glucose was varied to ascertain the optimum dose to maximize the performance of the carbon hybrids in supercapacitor applications. Both the thermal treatment applied and the addition of CNTs lead to changes in the textural and chemical properties of the activated carbons.
View Article and Find Full Text PDFCathodic protection, often taught in curricular units, such as corrosion and materials science, is an important subject in the study of chemical engineering. The implementation of lab setups and experimental activities in this field, are core to promoting understanding of the underlying concepts and to developing "hands-on" skills fundamental to the success of future process engineers. This paper reports the influence of different variables on the electrical potential and current behaviors of an educational cathodic protection system operated with a single drainage point.
View Article and Find Full Text PDF