The analysis of circulating tumor cells (CTCs) is important for cancer diagnosis and prognosis. Microfluidics has been employed for CTC analysis due to its scaling advantages and high performance. However, pre-analytical methods for CTC sample preparation are often combined with microfluidic platforms because a large sample volume is required to detect extremely rare CTCs.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) requires multimodal therapeutic approaches and disease monitoring for effective treatment. Liquid biopsy biomarkers, including circulating tumor cells (CTCs) and cancer stem-like cells (CSCs), hold promise for evaluating treatment response promptly and guiding therapeutic modifications. From 24 patients with metastatic PDAC (stage IV, M1) undergoing active systemic treatment, we collected 78 blood samples at different time points for CTC and CSC isolation using a microfluidic platform functionalized with antibodies against a CTC biomarker, epithelial cell adhesion molecule (EpCAM), or a CSC biomarker, CD133.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) have shown potential for cancer diagnosis and prognosis. Affinity-based CTC isolation methods have been proved to be efficient for CTC detection in clinical blood samples. One of the popular choices for affinity-based CTC isolation is to immobilize capture agents onto an array of microposts in microchannels, providing high CTC capture efficiency due to enhanced interactions between tumor cells and capture agents on the microposts.
View Article and Find Full Text PDFEnumeration of circulating tumor cells (CTCs) can provide valuable prognostic information to guide cancer treatment as well as help monitor disease progression. Analysis of these rare malignant cells has the potential to further our understanding of cancer metastasis by gaining insights into CTC characteristics and properties. Microfluidics presents a unique platform to isolate and study CTCs.
View Article and Find Full Text PDF