Publications by authors named "Jose Henrique de Morais Goulart"

In the context of spectral unmixing, essential information corresponds to the most linearly dissimilar rows and/or columns of a two-way data matrix which are indispensable to reproduce the full data matrix in a convex linear way. Essential information has recently been shown accessible on-the-fly via a decomposition of the measured spectra in the Fourier domain and has opened new perspectives for fast Raman hyperspectral microimaging. In addition, when some spatial prior is available about the sample, such as the existence of homogeneous objects in the image, further acceleration for the data acquisition procedure can be achieved by using superpixels.

View Article and Find Full Text PDF

In the context of multivariate curve resolution (MCR) and spectral unmixing, essential information (EI) corresponds to the most linearly dissimilar rows and/or columns of a two-way data matrix. In recent works, the assessment of EI has been revealed to be a very useful practical tool to select the most relevant spectral information before MCR analysis, key features being speed and compression ability. However, the canonical approach relies on the principal component analysis to evaluate the convex hull that encapsulates the data structure in the normalized score space.

View Article and Find Full Text PDF