In recent years, the application of artificial intelligence (AI) in the automotive industry has led to the development of intelligent systems focused on road safety, aiming to improve protection for drivers and pedestrians worldwide to reduce the number of accidents yearly. One of the most critical functions of these systems is pedestrian detection, as it is crucial for the safety of everyone involved in road traffic. However, pedestrian detection goes beyond the front of the vehicle; it is also essential to consider the vehicle's rear since pedestrian collisions occur when the car is in reverse drive.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) represents one of the biggest health problems in Mexico, and it is extremely important to early detect this disease and its complications. For a noninvasive detection of T2DM, a machine learning (ML) approach that uses ensemble classification models with dichotomous output that is also fast and effective for early detection and prediction of T2D can be used. In this article, an ensemble technique by hard voting is designed and implemented using generalized linear regression (GLM), support vector machines (SVM) and artificial neural networks (ANN) for the classification of T2DM patients.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is the most recurrent mental illness globally, affecting approximately 5% of adults. Furthermore, according to the National Institute of Mental Health (NIMH) of the U.S.
View Article and Find Full Text PDFWorldwide, motor vehicle accidents are one of the leading causes of death, with alcohol-related accidents playing a significant role, particularly in child death. Aiming to aid in the prevention of this type of accidents, a novel non-invasive method capable of detecting the presence of alcohol inside a motor vehicle is presented. The proposed methodology uses a series of low-cost alcohol MQ3 sensors located inside the vehicle, whose signals are stored, standardized, time-adjusted, and transformed into 5 s window samples.
View Article and Find Full Text PDFChildren activity recognition (CAR) is a subject for which numerous works have been developed in recent years, most of them focused on monitoring and safety. Commonly, these works use as data source different types of sensors that can interfere with the natural behavior of children, since these sensors are embedded in their clothes. This article proposes the use of environmental sound data for the creation of a children activity classification model, through the development of a deep artificial neural network (ANN).
View Article and Find Full Text PDFInt J Environ Res Public Health
May 2018
One of the principal conditions that affects oral health worldwide is dental caries, occurring in about 90% of the global population. This pathology has been considered a challenge because of its high prevalence, besides being a chronic but preventable disease which can be caused by a series of different demographic, dietary" among others. Based on this problem, in this research a demographic and dietary features analysis is performed for the classification of subjects according to their oral health status based on caries, according to the age group where the population belongs, using as feature selector a technique based on fast backward selection (FBS) approach for the development of three predictive models, one for each age range (group 1: 10⁻19; group 2: 20⁻59; group 3: 60 or more years old).
View Article and Find Full Text PDFAmong the current challenges of the Smart City, traffic management and maintenance are of utmost importance. Road surface monitoring is currently performed by humans, but the road surface condition is one of the main indicators of road quality, and it may drastically affect fuel consumption and the safety of both drivers and pedestrians. Abnormalities in the road, such as manholes and potholes, can cause accidents when not identified by the drivers.
View Article and Find Full Text PDF