Animals from embryos to adults experiencing stress from climate change have numerous mechanisms available for enhancing their long-term survival. In this review we consider these options, and how viable they are in a world increasingly experiencing extreme weather associated with climate change. A deeply understood mechanism involves natural selection, leading to evolution of new adaptations that help cope with extreme and stochastic weather events associated with climate change.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2020
The darkedged splitfin (Amarillo fish), Girardinichthys multiradiatus is a vulnerable endemic fish species inhabiting central Mexico's high altitude Upper Lerma Basin, where aquatic hypoxia is exacerbated by low barometric pressures (lower Ps), large aquatic oxygen changes, poor aquatic systems management and urban, agricultural and industrial pollution. The respiratory physiology of G. multiradiatus under such challenging conditions is unknown - therefore the main goal of the present study was to determine metabolic rates and hypoxia tolerance to elucidate possible physiological adaptations allowing this fish to survive high altitude and increasingly eutrophic conditions.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
November 2019
The Mayan cichlid (Mayaheros uropthalmus) is a freshwater fish inhabiting warm, potentially hypoxic and/or brackish waters, in Mexico and Central America. Despite its description as highly hypoxia tolerant, M. uropthalmus has been classified physiologically as an 'oxyconformer', which would place it in a very small (and shrinking) category of fishes that purportedly cannot maintain oxygen consumption (ṀO) as ambient PO falls.
View Article and Find Full Text PDFLarval and juvenile air breathing fish may experience nocturnal and/or seasonal aquatic hypoxia. Yet, whether hypoxia induces respiratory developmental plasticity in larval air breathing fish is uncertain. This study predicted that larvae of two closely related anabantid fish-the facultative air breather the Siamese fighting fish (Betta splendens) and the obligate air breathing blue gourami (Trichopodus trichopterus)-show distinct differences in developmental changes in body, gill, and labyrinth morphology because of their differences in levels of dependency upon air breathing and habitat.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
September 2017
Our understanding of reptilian cardiovascular development and regulation has increased substantially for two species the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina) during the past two decades. However, what we know about cardiovascular maturation in many other species remains poorly understood or unknown. Embryonic sea turtles have been studied to understand the maturation of metabolic function, but these studies have not addressed the cardiovascular system.
View Article and Find Full Text PDFHome range is defined as the area within which an individual moves to acquire resources necessary to increase their fitness and may vary inter and intra-specifically with biotic and abiotic factors. This study details the home range of the parthenogenic lizard, Aspidoscelis cozumela, an active forager microendemic to Cozumel Island, México, with high preference for open sand beaches. The home range of A.
View Article and Find Full Text PDF