Purpose: The objective of this study is to validate a novel workflow for implementing patient-specific finite element (FE) simulations to virtually replicate the Transcatheter Aortic Valve Implantation (TAVI) procedure.
Methods: Seven patients undergoing TAVI were enrolled. Patient-specific anatomical models were reconstructed from pre-operative computed tomography (CT) scans and subsequentially discretized, considering the native aortic leaflets and calcifications.
Glaucoma, a leading cause of blindness worldwide, is primarily caused by elevated intraocular pressure (IOP). Accurate and reliable IOP measurements are the key to diagnose the pathology in time and to provide for effective treatment strategies. The currently available methods for measuring IOP include contact and non contact tonometers (NCT), which estimate IOP based on the corneal deformation caused by an external load, that in the case of NCT is an air pulse.
View Article and Find Full Text PDFComput Methods Programs Biomed
September 2024
Background And Objective: Coronary plaque rupture is a precipitating event responsible for two thirds of myocardial infarctions. Currently, the risk of plaque rupture is computed based on demographic, clinical, and image-based adverse features. However, using these features the absolute event rate per single higher-risk lesion remains low.
View Article and Find Full Text PDFKeratoconus is a progressive ocular disorder affecting the corneal tissue, leading to irregular astigmatism and decreased visual acuity. The architectural organization of corneal tissue is altered in keratoconus, however, data from ex vivo testing of biomechanical properties of keratoconic corneas are limited and it is unclear how their results relate to true mechanical properties in vivo. This study explores the mechanical properties of keratoconic corneas through numerical simulations of non-contact tonometry (NCT) reproducing the clinical test of the Corvis ST device.
View Article and Find Full Text PDFComput Methods Programs Biomed
June 2023
Additive manufacturing is widely used in the orthopaedic industry for the high freedom and flexibility in the design and production of personalized custom implants made of Ti6Al4V. Within this context, finite element modeling of 3D printed prostheses is a robust tool both to guide the design phase and to support clinical evaluations, possibly virtually describing the in-vivo behavior of the implant. Given realistic scenarios, a suitable description of the overall implant's mechanical behavior is unavoidable.
View Article and Find Full Text PDFThoracic Endovascular Aortic Repair (TEVAR) is a minimally invasive technique to treat thoracic aorta pathologies and consists of placing a self-expandable stent-graft into the pathological region to restore the vessel lumen and recreate a more physiological condition. Exhaustive computational models, namely the finite element analysis, can be implemented to reproduce the clinical procedure. In this context, numerical models, if used for clinical applications, must be reliable and the simulation credibility should be proved to predict clinical procedure outcomes or to build in-silico clinical trials.
View Article and Find Full Text PDFComput Methods Programs Biomed
February 2023
Background And Objective: In the last 30 years, a growing interest has involved the study of zebrafish thanks to its physiological characteristics similar to those of humans. The aim of the following work is to create an electrophysiological computational model of the zebrafish heart and lay the foundation for the development of an in-silico model of the zebrafish heart that will allow to study the correlation between pathologies and drug administration with the main electrophysiological parameters as the ECG signal.
Methods: The model considers a whole body and the two chambers of three days post fertilization (3 dpf) zebrafish.
Understanding the corneal mechanical properties has great importance in the study of corneal pathologies and the prediction of refractive surgery outcomes. Non-Contact Tonometry (NCT) is a non-invasive diagnostic tool intended to characterize the corneal tissue response by applying a defined air-pulse. The biomarkers inferred from this test can only be considered as indicators of the global biomechanical behaviour rather than the intrinsic biomechanical properties of the corneal tissue.
View Article and Find Full Text PDFComput Methods Programs Biomed
November 2022
Background And Objective: In silico electrophysiological models are generally validated by comparing simulated results with experimental data. When dealing with single-cell and tissue scales simultaneously, as occurs frequently during model development and calibration, the effects of inter-cellular coupling should be considered to ensure the trustworthiness of model predictions. The hypothesis of this paper is that the cell-tissue mismatch can be reduced by incorporating the effects of conduction into the single-cell stimulation current.
View Article and Find Full Text PDFMechanical thrombectomy (MT) treatment of acute ischemic stroke (AIS) patients typically involves use of stent retrievers or aspiration catheters alone or in combination. For in silico trials of AIS patients, it is crucial to incorporate the possibility of thrombus fragmentation during the intervention. This study focuses on two aspects of the thrombectomy simulation: i) Thrombus fragmentation on the basis of a failure model calibrated with experimental tests on clot analogs; ii) the combined stent-retriever and aspiration catheter MT procedure is modeled by adding both the proximal balloon guide catheter and the distal access catheter.
View Article and Find Full Text PDFMed Biol Eng Comput
November 2022
Mechanisms of atrial fibrillation and the susceptibility to reentries can be impacted by the repolarization across the atria. Studies into atrial fibrillation ignore cell-to-cell heterogeneity due to electrotonic coupling. Recent studies show that cellular variability may have a larger impact on electrophysiological behaviour than assumed.
View Article and Find Full Text PDFBackground: The performance of self-expandable stents is being increasingly studied by means of finite-element analysis. As for peripheral stents, transcatheter valves and stent-grafts, there are numerous computational studies for setting up a proper model, this information is missing for stent-retrievers used in the procedure of thrombus removal in cerebral arteries. It is well known that the selection of the appropriate finite-element dimensions (topology) and formulations (typology) is a fundamental step to set up accurate and reliable computational simulations.
View Article and Find Full Text PDFThoracic Endovascular Aortic Repair (TEVAR) is the preferred treatment option for thoracic aortic pathologies and consists of inserting a self-expandable stent-graft into the pathological region to restore the lumen. Computational models play a significant role in procedural planning and must be reliable. For this reason, in this work, high-fidelity Finite Element (FE) simulations are developed to model thoracic stent-grafts.
View Article and Find Full Text PDFComput Methods Programs Biomed
June 2022
Background And Objective: Transcatheter aortic valve implantation (TAVI) has become the standard treatment for a wide range of patients with aortic stenosis. Although some of the TAVI post-operative complications are addressed in newer designs, other complications and lack of long-term and durability data on the performance of these prostheses are limiting this procedure from becoming the standard for heart valve replacements. The design optimization of these devices with the finite element and optimization techniques can help increase their performance quality and reduce the risk of malfunctioning.
View Article and Find Full Text PDFThe widespread incidence of cardiovascular diseases and associated mortality and morbidity, along with the advent of powerful computational resources, have fostered an extensive research in computational modeling of vascular pathophysiology field and promoted models as a support for biomedical research. Given the multiscale nature of biological systems, the integration of phenomena at different spatial and temporal scales has emerged to be essential in capturing mechanobiological mechanisms underlying vascular adaptation processes. In this regard, agent-based models have demonstrated to successfully embed the systems biology principles and capture the emergent behavior of cellular systems under different pathophysiological conditions.
View Article and Find Full Text PDFDeveloping an efficient stent frame for transcatheter aortic valves (TAV) needs thorough investigation in different design and functional aspects. In recent years, most TAV studies have focused on their clinical performance, leaflet design, and durability. Although several optimization studies on peripheral stents exist, the TAV stents have different functional requirements and need to be explicitly studied.
View Article and Find Full Text PDFIntra-arterial thrombectomy is a minimally invasive procedure in which an obstructing thrombus (clot) is removed using a minimally-invasive device: a stent-retriever. The stent-retriever is first deployed, and then the thrombus is removed during stent-retriever retraction. This procedure can be simulated using a detailed computational model.
View Article and Find Full Text PDFTreatment of acute ischemic stroke has been recently improved with the introduction of endovascular mechanical thrombectomy, a minimally invasive procedure able to remove a clot using aspiration devices and/or stent-retrievers. Despite the promising and encouraging results, improvements to the procedure and to the stent design are the focus of the recent efforts. Computational studies can pave the road to these improvements, providing their ability to describe and accurately reproduce a real procedure.
View Article and Find Full Text PDFThe bicuspid aortic valve (BAV) is a common and heterogeneous congenital heart abnormality that is often complicated by aortic stenosis. Although initially developed for tricuspid aortic valves (TAV), transcatheter aortic valve replacement (TAVR) devices are increasingly applied to the treatment of BAV stenosis. It is known that patient-device relationship between TAVR and BAV are not equivalent to those observed in TAV but the nature of these differences are not well understood.
View Article and Find Full Text PDFSmart biomaterials are increasingly being used to control stem cell fate in vitro by the recapitulation of the native niche microenvironment. By integrating experimental measurements with numerical models, we show that in mesenchymal stem cells grown inside a 3D synthetic niche both nuclear transport of a myogenic factor and the passive nuclear diffusion of a smaller inert protein are reduced. Our results also suggest that cell morphology modulates nuclear proteins import through a partition of the nuclear envelope surface, which is a thin but extremely permeable annular portion in cells cultured on 2D substrates.
View Article and Find Full Text PDFAn acute ischaemic stroke appears when a blood clot blocks the blood flow in a cerebral artery. Intra-arterial thrombectomy, a mini-invasive procedure based on stent technology, is a mechanical available treatment to extract the clot and restore the blood circulation. After stent deployment, the clot, trapped in the stent struts, is pulled along with the stent towards a receiving catheter.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2021
Duchenne muscular dystrophy (DMD) is a muscle degenerative disease caused by a mutation in the dystrophin gene. The lack of dystrophin leads to persistent inflammation, degeneration/regeneration cycles of muscle fibers, Ca dysregulation, incompletely regenerated fibers, necrosis, fibrotic tissue replacement, and alterations in the fiber ultrastructure i.e.
View Article and Find Full Text PDFExpert Rev Cardiovasc Ther
January 2021
: Increasing applications of transcatheter aortic valve replacement (TAVR) to treat high- or medium-risk patients with aortic diseases have been proposed in recent years. Despite its increasing use, many influential factors are still to be understood. Furthermore, innovative applications of TAVR such as in bicuspid aortic valves or in low-risk patients are emerging in clinical use.
View Article and Find Full Text PDF