Publications by authors named "Jose Fabio Lana"

Upper Crossed Syndrome (UCS), described by Vladimir Janda, is characterized by postural changes involving the cervical spine and trunk, leading to biomechanical limitations and cervicoscapulobrachial pain. This study proposes a mesotherapy protocol, termed the 8:1 block, to address cervicoscapulobrachialgia by targeting the scapulae and associated musculature. The scapula, central to shoulder girdle kinematics, often exhibits dyskinesis and muscular imbalances, notably the pattern referred to as scapular upper trapping (SUT).

View Article and Find Full Text PDF

SDIMMMER is an acronym intended for use in both clinical practice and medical research. It facilitates a comprehensive evaluation of a patient's metabolic profile and serves as a mnemonic for the following key assessment areas: Sleep, Diet, Microbiome, Metabolism, Medications, Exams, and Rehabilitation. In the clinical setting, SDIMMMER's primary objective is to monitor and manage the patient's metabolic status, particularly targeting low-grade chronic systemic inflammation, a hallmark of metabolic syndrome (MS).

View Article and Find Full Text PDF

The buffy-coat, a layer of leukocytes and platelets obtained from peripheral blood centrifugation, plays a crucial role in tissue regeneration and the modulation of inflammatory responses. This article explores the mechanisms of regenerative inflammation, highlighting the critical role of the buffy-coat in influencing macrophage polarization and its therapeutic potential. Macrophage polarization into M1 and M2 subtypes is pivotal in balancing inflammation and tissue repair, with M1 macrophages driving pro-inflammatory responses and M2 macrophages promoting tissue healing and regeneration.

View Article and Find Full Text PDF

Bone marrow cellular therapy has undergone a remarkable evolution, significantly impacting the treatment of musculoskeletal disorders. This review traces the historical trajectory from early mythological references to contemporary scientific advancements. The groundbreaking work of Friedenstein in 1968, identifying fibroblast colony-forming cells in bone marrow, laid the foundation for future studies.

View Article and Find Full Text PDF

Type II diabetes mellitus (T2DM) has experienced a dramatic increase globally across countries of various income levels over the past three decades. The persistent prevalence of T2DM is attributed to a complex interplay of genetic and environmental factors. While numerous pharmaceutical therapies have been developed, there remains an urgent need for innovative treatment approaches that offer effectiveness without significant adverse effects.

View Article and Find Full Text PDF

Hyaluronic acid (HA), a naturally occurring polysaccharide, holds immense potential in regenerative medicine due to its diverse biological functions and clinical applications, particularly in gel formulations. This paper presents a comprehensive exploration of HA, encompassing its origins, molecular characteristics, and therapeutic roles in gel-based interventions. Initially identified in bovine vitreous humor, HA has since been found in various tissues and fluids across vertebrate organisms and bacterial sources, exhibiting consistent physicochemical properties.

View Article and Find Full Text PDF

Glutathione (GSH), a tripeptide synthesized intracellularly, serves as a pivotal antioxidant, neutralizing reactive oxygen species (ROS) and reactive nitrogen species (RNS) while maintaining redox homeostasis and detoxifying xenobiotics. Its potent antioxidant properties, particularly attributed to the sulfhydryl group (-SH) in cysteine, are crucial for cellular health across various organelles. The glutathione-glutathione disulfide (GSH-GSSG) cycle is facilitated by enzymes like glutathione peroxidase (GPx) and glutathione reductase (GR), thus aiding in detoxification processes and mitigating oxidative damage and inflammation.

View Article and Find Full Text PDF

Autologous platelet-rich plasma (PRP) preparations are prepared at the point of care. Centrifugation cellular density separation sequesters a fresh unit of blood into three main fractions: a platelet-poor plasma (PPP) fraction, a stratum rich in platelets (platelet concentrate), and variable leukocyte bioformulation and erythrocyte fractions. The employment of autologous platelet concentrates facilitates the biological potential to accelerate and support numerous cellular activities that can lead to tissue repair, tissue regeneration, wound healing, and, ultimately, functional and structural repair.

View Article and Find Full Text PDF

Degenerative disc disease (DDD) is a pervasive condition that limits quality of life and burdens economies worldwide. Conventional pharmacological treatments primarily aimed at slowing the progression of degeneration have demonstrated limited long-term efficacy and often do not address the underlying causes of the disease. On the other hand, orthobiologics are regenerative agents derived from the patient's own tissue and represent a promising emerging therapy for degenerative disc disease.

View Article and Find Full Text PDF

Bioproducts derived from platelets have been extensively used across various medical fields, with a recent notable surge in their application in dermatology and aesthetic procedures. These products, such as platelet-rich plasma (PRP) and platelet-rich fibrin (PRF), play crucial roles in inducing blood vessel proliferation through growth factors derived from peripheral blood. PRP and PRF, in particular, facilitate fibrin polymerization, creating a robust structure that serves as a reservoir for numerous growth factors.

View Article and Find Full Text PDF

Spinal cord injury (SCI) represents a severe trauma to the nervous system, leading to significant neurological damage, chronic inflammation, and persistent neuropathic pain. Current treatments, including pharmacotherapy, immobilization, physical therapy, and surgical interventions, often fall short in fully addressing the underlying pathophysiology and resultant disabilities. Emerging research in the field of regenerative medicine has introduced innovative approaches such as autologous orthobiologic therapies, with bone marrow aspirate (BMA) being particularly notable for its regenerative and anti-inflammatory properties.

View Article and Find Full Text PDF

Chronic wounds, characterized by prolonged healing processes, pose a significant medical challenge with multifaceted aetiologies, including local and systemic factors. Here, it explores the complex pathogenesis of chronic wounds, emphasizing the disruption in the normal phases of wound healing, particularly the inflammatory phase, leading to an imbalance in extracellular matrix (ECM) dynamics and persistent inflammation. Senescent cell populations further contribute to impaired wound healing in chronic lesions.

View Article and Find Full Text PDF

Musculoskeletal disorders are increasingly prevalent worldwide, causing significant socioeconomic burdens and diminished quality of life. Notably, patellar chondropathy (PC) is among the most widespread conditions affecting joint structures, resulting in profound pain and disability. Hyaluronic acid (HA) and platelet-rich plasma (PRP) have emerged as reliable, effective, and minimally invasive alternatives.

View Article and Find Full Text PDF

Angiogenesis is the formation of new blood vessel from existing vessels and is a critical first step in tissue repair following chronic disturbances in healing and degenerative tissues. Chronic pathoanatomic tissues are characterized by a high number of inflammatory cells; an overexpression of inflammatory mediators; such as tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1); the presence of mast cells, T cells, reactive oxygen species, and matrix metalloproteinases; and a decreased angiogenic capacity. Multiple studies have demonstrated that autologous orthobiological cellular preparations (e.

View Article and Find Full Text PDF

Platelet- and fibrin-rich orthobiologic products, such as autologous platelet concentrates, have been extensively studied and appreciated for their beneficial effects on multiple conditions. Platelet-rich plasma (PRP) and its derivatives, including platelet-rich fibrin (PRF), have demonstrated encouraging outcomes in clinical and laboratory settings, particularly in the treatment of musculoskeletal disorders such as osteoarthritis (OA). Although PRP and PRF have distinct characteristics, they share similar properties.

View Article and Find Full Text PDF

Orthobiologics are biological materials that are intended for the regeneration of bone, cartilage, and soft tissues. In this review, we discuss the application of orthobiologics in Achilles tendinopathy, more specifically. We explain the concepts and definitions of each orthobiologic and the literature regarding its use in tendon disorders.

View Article and Find Full Text PDF

Some say that all diseases begin in the gut. Interestingly, this concept is actually quite old, since it is attributed to the Ancient Greek physician Hippocrates, who proposed the hypothesis nearly 2500 years ago. The continuous breakthroughs in modern medicine have transformed our classic understanding of the gastrointestinal tract (GIT) and human health.

View Article and Find Full Text PDF

The knowledge of the essential role of platelets in tissue healing is gradually increasing and as regenerative medicine prompts new solutions, platelet-derived bioproducts have been proposed as a potential tool in this field. In orthopaedics and sports medicine, the use of PRP has been rapidly increasing in popularity as patients seek novel non-surgical approaches to acute and chronic musculoskeletal conditions. The concept of having platelets as a secretory organ other than a mere sponge-like coagulation component opens up new frontiers for the use of the platelet secretome.

View Article and Find Full Text PDF

Orthobiologics continue to gain popularity in many areas of medical science, especially in the field of regenerative medicine. Platelet-rich plasma derivatives are orthobiologic tools of particular interest. These biologic products can be obtained via centrifugation of a patient's whole blood and the components can then be subsequently isolated, concentrated and ultimately administered into injured tissues, particularly in areas where standard healing is disrupted.

View Article and Find Full Text PDF

The rise in musculoskeletal disorders has prompted medical experts to devise novel effective alternatives to treat complicated orthopedic conditions. The ever-expanding field of regenerative medicine has allowed researchers to appreciate the therapeutic value of bone marrow-derived biological products, such as the bone marrow aspirate (BMA) clot, a potent orthobiologic which has often been dismissed and regarded as a technical complication. Numerous in vitro and in vivo studies have contributed to the expansion of medical knowledge, revealing optimistic results concerning the application of autologous bone marrow towards various impactful disorders.

View Article and Find Full Text PDF

Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling).

View Article and Find Full Text PDF

Unlabelled: Metabolic syndrome (MS) has become one of the top major health burdens for over three decades not only due to its effects on cardiovascular health but also its implications in orthopedics. Extensive research has shown that MS is tightly linked to osteoarthritis and inflammation, a process which appears to primarily occur in the subchondral bone via the incidence of bone-marrow lesions (BMLs). Numerous studies identify obesity, dyslipidemia, insulin resistance and hypertension as the top metabolic risk factors, the so-called "deadly quartet".

View Article and Find Full Text PDF