Two sphingosine kinase isoforms, sphingosine kinase 1 (SPHK1) and sphingosine kinase 2 (SPHK2), synthesize the lipid sphingosine-1-phosphate (S1P) by phosphorylating sphingosine. SPHK1 is a cytoplasmic kinase, and SPHK2 is localized to the nucleus and other organelles. In the cytoplasm, the SPHK1/S1P pathway modulates autophagy and protein ubiquitination, among other processes.
View Article and Find Full Text PDFTardigrades are microscopic invertebrates, which are capable of withstanding extreme environmental conditions, including high levels of radiation. A Tardigrade protein, Dsup (Damage Suppressor), protects the Tardigrade's DNA during harsh environmental stress and X-rays. When expressed in cancer cells, Dsup protects DNA from single- and double-strand breaks (DSBs) induced by radiation, increases survival of irradiated cells, and protects DNA from reactive oxygen species.
View Article and Find Full Text PDFSenescence in the cerebral endothelium has been proposed as a mechanism that can drive dysfunction of the cerebral vasculature, which precedes vascular dementia. Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) is a matricellular protein secreted by cerebral endothelial cells (CEC). CCN1 induces senescence in fibroblasts.
View Article and Find Full Text PDFStroke is the second leading cause of death and a major cause of disability worldwide, and biological sex is an important determining factor in stroke incidence and pathology. From childhood through adulthood, men have a higher incidence of stroke compared with women. Abundant research has confirmed the beneficial effects of estrogen in experimental ischemic stroke but genetic factors such as the X-chromosome complement can also play an important role in determining sex differences in stroke.
View Article and Find Full Text PDFAging is associated with chronic systemic inflammation, which contributes to the development of many age-related diseases, including vascular disease. The world's population is aging, leading to an increasing prevalence of both stroke and vascular dementia. The inflammatory response to ischemic stroke is critical to both stroke pathophysiology and recovery.
View Article and Find Full Text PDFThe G-quadruplex (G4-DNA or G4) is a secondary DNA structure formed by DNA sequences containing multiple runs of guanines. While it is now firmly established that stabilized G4s lead to enhanced genomic instability in cancer cells, whether and how G4s contribute to genomic instability in brain cells is still not clear. We previously showed that, in cultured primary neurons, small-molecule G4 stabilizers promote formation of DNA double-strand breaks (DSBs) and downregulate the gene.
View Article and Find Full Text PDFPeroxisomes exist in nearly every cell, oxidizing fats, synthesizing lipids and maintaining redox balance. As the brain ages, multiple pathways are negatively affected, but it is currently unknown if peroxisomal proteins are affected by aging in the brain. While recent studies have investigated a PEX5 homolog in aging C.
View Article and Find Full Text PDFGuanine-rich DNA strands can form secondary structures known as G-quadruplexes (G4-DNA or G4s). G4-DNA is important for the regulation of replication and transcription. We recently showed that the expression of , a gene that is critical for macroautophagy/autophagy, is controlled by G4-DNA in neurons.
View Article and Find Full Text PDFAmyloid plaques in Alzheimer's disease (AD) are associated with inflammation. Recent studies demonstrated the involvement of the gut in cerebral amyloid-beta (Aβ) pathogenesis; however, the mechanisms are still not well understood. We hypothesize that the gut bears the Aβ burden prior to brain, highlighting gut-brain axis (GBA) interaction in neurodegenerative disorders.
View Article and Find Full Text PDFAutophagy is a degradative pathway for removing aggregated proteins, damaged organelles, and parasites. Evidence indicates that autophagic pathways differ between cell types. In neurons, autophagy plays a homeostatic role, compared to a survival mechanism employed by starving non-neuronal cells.
View Article and Find Full Text PDFDoxorubicin, a commonly used anti-neoplastic agent, causes severe neurotoxicity. Doxorubicin promotes thinning of the brain cortex and accelerates brain aging, leading to cognitive impairment. Oxidative stress induced by doxorubicin contributes to cellular damage.
View Article and Find Full Text PDFThe G-quadruplex is a non-canonical DNA secondary structure formed by four DNA strands containing multiple runs of guanines. G-quadruplexes play important roles in DNA recombination, replication, telomere maintenance, and regulation of transcription. Small molecules that stabilize the G-quadruplexes alter gene expression in cancer cells.
View Article and Find Full Text PDFHuntington disease (HD) is the most common inherited neurodegenerative disorder. It has no cure. The protein huntingtin causes HD, and mutations to it confer toxic functions to the protein that lead to neurodegeneration.
View Article and Find Full Text PDFDoxorubicin, a commonly used chemotherapy agent, induces severe cardio- and neurotoxicity. Molecular mechanisms of cardiotoxicity have been extensively studied, but mechanisms by which doxorubicin exhibits its neurotoxic properties remain unclear. Here, we show that doxorubicin impairs neuronal autophagy, leading to the accumulation of an autophagy substrate p62.
View Article and Find Full Text PDFAlthough implicated in neurodegeneration, autophagy has been characterized mostly in yeast and mammalian non-neuronal cells. In a recent study, we sought to determine if SPHK1 (sphingosine kinase 1), implicated previously in macroautophagy/autophagy in cancer cells, regulates autophagy in neurons. SPHK1 synthesizes sphingosine-1-phosphate (S1P), a bioactive lipid involved in cell survival.
View Article and Find Full Text PDFAutophagy is an important homeostatic mechanism that eliminates long-lived proteins, protein aggregates and damaged organelles. Its dysregulation is involved in many neurodegenerative disorders. Autophagy is therefore a promising target for blunting neurodegeneration.
View Article and Find Full Text PDFAutophagy is a natural process of 'self-eating' that occurs within cells and can be either pro-survival or can cause cell death. As a pro-survival mechanism, autophagy obtains energy by recycling cellular components such as macromolecules or organelles. In response to nutrient deprivation, e.
View Article and Find Full Text PDF