Protected Areas (PAs) are essential to maintaining biodiversity, while effective management plans (MPs) are essential for the management of these areas. Thus, MPs must have relevant data analyses and diagnoses to evaluate ecological conditions of PAs. We evaluated the environmental diagnoses of 126 Brazilian federal PAs, the methods used to collect data and defined the diagnostic level of PMs according to the type and number of analyzes performed for each PA category.
View Article and Find Full Text PDFOur understanding of the impacts of ongoing global warming on terrestrial species has increased significantly during the last several years, but how climatic change has affected, and will affect, the distribution of earthworms remains largely unknown. We used climate niche modeling to model the current distribution of the giant earthworm Rhinodrilus alatus - an endemic species of the Cerrado Domain in Brazil, which is traditionally harvested and commercialized for fishing bait. R.
View Article and Find Full Text PDFHydrological models are powerful tools to simulate the behavior of the water cycle in terrestrial systems and their water interface, including modifications resulting from anthropic activities. In such environments the water stocks depend heavily on the vegetation cover and the ecosystem services derived from it, as part of the interaction soil-plant-topography. Wildfires are disturbances capable of breaking the foundations of these delicate systems.
View Article and Find Full Text PDFFire has shaped plant evolution and biogeochemical cycles for millions of years in savanna ecosystems, but changes in natural fire regimes promoted by human land use threaten contemporary conservation efforts. In protected areas in the Brazilian savannas (Cerrado), the predominant management policy is fire suppression, reflecting a cultural heritage which considers that fire always has a negative impact on biodiversity. Here we compare resultant fire-regimes in Canastra National Park (CNP), southeast Brazil, associated with areas under and without fire suppression management, based on a 16-year Landsat imagery record.
View Article and Find Full Text PDFMountains provide an interesting context in which to study the many facets of biodiversity in response to macroclimate, since environmental conditions change rapidly due to elevation. Although the decrease in biodiversity with increasing elevation is generally accepted, our understanding of the variation of functional diversity along altitudinal gradients is still poorly known. The partitioning of diversity into spatial components can help to understand the processes that influence the distribution of species, and these studies are urgently needed in face of the increasing threats to mountain environments throughout the world.
View Article and Find Full Text PDF