The burgeoning demand for durable and eco-friendly road infrastructure necessitates the exploration of innovative materials and methodologies. This study investigates the potential of Graphene Oxide (GO), a nano-material known for its exceptional dispersibility and mechanical reinforcement capabilities, to enhance the sustainability and durability of concrete pavements. Leveraging the synergy between advanced artificial intelligence techniques-Artificial Neural Networks (ANN), Genetic Algorithms (GA), and Particle Swarm Optimization (PSO)-it is aimed to delve into the intricate effects of Nano-GO on concrete's mechanical properties.
View Article and Find Full Text PDFRainwater Harvesting (RWH) is increasingly recognized as a vital sustainable practice in urban environments, aimed at enhancing water conservation and reducing energy consumption. This study introduces an innovative integration of nano-composite materials as Silver Nanoparticles (AgNPs) into RWH systems to elevate water treatment efficiency and assess the resulting environmental and energy-saving benefits. Utilizing a regression analysis approach with Support Vector Machines (SVM) and K-Nearest Neighbors (KNN), this study will reach the study objective.
View Article and Find Full Text PDFThis study synthesized zinc oxide nanoparticles (ZnO NPs) using a novel green approach, with Sida acuta leaf extract as a capping and reducing agent to initiate nucleation and structure formation. The innovation of this study lies in demonstrating the originality of utilizing zinc oxide nanoparticles for antibacterial action, antioxidant potential, and catalytic degradation of Congo red dye. This unique approach harnesses eco-friendly methods to initiate nucleation and structure formation.
View Article and Find Full Text PDFTo improve the detection of COVID-19, this paper researches and proposes an effective swarm intelligence algorithm-driven multi-threshold image segmentation (MTIS) method. First, this paper proposes a novel RIME structure integrating the Co-adaptive hunting and dispersed foraging strategies, called CDRIME. Specifically, the Co-adaptive hunting strategy works in coordination with the basic search rules of RIME at the individual level, which not only facilitates the algorithm to explore the global optimal solution but also enriches the population diversity to a certain extent.
View Article and Find Full Text PDFThis research delves into the significance of influenza outbreaks in public health, particularly the importance of accurate forecasts using weekly Influenza-like illness (ILI) rates. The present work develops a novel hybrid machine-learning model by combining singular value decomposition with kernel ridge regression (SKRR). In this context, a novel hybrid model known as H-SKRR is developed by combining two robust forecasting approaches, SKRR and ridge regression, which aims to improve multi-step-ahead predictions for weekly ILI rates in Southern and Northern China.
View Article and Find Full Text PDFTimely diagnosis of medical conditions can significantly mitigate the risks they pose to human life. Consequently, there is an urgent demand for an effective auxiliary model that assists physicians in accurately diagnosing medical conditions based on imaging data. While multi-threshold image segmentation models have garnered considerable attention due to their simplicity and ease of implementation, the selection of threshold combinations greatly influences the segmentation performance.
View Article and Find Full Text PDFLupus Nephritis (LN) is a significant risk factor for morbidity and mortality in systemic lupus erythematosus, and nephropathology is still the gold standard for diagnosing LN. To assist pathologists in evaluating histopathological images of LN, a 2D Rényi entropy multi-threshold image segmentation method is proposed in this research to apply to LN images. This method is based on an improved Cuckoo Search (CS) algorithm that introduces a Diffusion Mechanism (DM) and an Adaptive β-Hill Climbing (AβHC) strategy called the DMCS algorithm.
View Article and Find Full Text PDF"Treatise on Febrile Diseases" is an important classic book in the academic history of Chinese material medica. Based on the knowledge map of traditional Chinese medicine established by the study of "Treatise on Febrile Diseases", a question-answering system of traditional Chinese medicine was established to help people better understand and use traditional Chinese medicine. Intention classification is the basis of the question-answering system of traditional Chinese medicine, but as far as we know, there is no research on question intention classification based on "Treatise on Febrile Diseases".
View Article and Find Full Text PDFThe domains of contemporary medicine and biology have generated substantial high-dimensional genetic data. Identifying representative genes and decreasing the dimensionality of the data can be challenging. The goal of gene selection is to minimize computing costs and enhance classification precision.
View Article and Find Full Text PDFA 2 factorial design was performed to analyze the performance of a mini-split air conditioning system under several psychrometric air conditions at the evaporator inlet, similar to Tropical Caribbean region conditions. In addition, a search for new energy-saving opportunities was performed. The results showed that interactions between the temperature of the air inlet, the humidity of the air inlet, and the fan speed level are significant in the mini-split energy performance under Caribbean climate conditions.
View Article and Find Full Text PDFAt present times, COVID-19 has become a global illness and infected people has increased exponentially and it is difficult to control due to the non-availability of large quantity of testing kits. Artificial intelligence (AI) techniques including machine learning (ML), deep learning (DL), and computer vision (CV) approaches find useful for the recognition, analysis, and prediction of COVID-19. Several ML and DL techniques are trained to resolve the supervised learning issue.
View Article and Find Full Text PDFType 2 diabetes (T2D) is a systematic chronic metabolic condition with abnormal sugar metabolism dysfunction, and its complications are the most harmful to human beings and may be life-threatening after long-term durations. Considering the high incidence and severity at late stage, researchers have been focusing on the identification of specific biomarkers and potential drug targets for T2D at the genomic, epigenomic, and transcriptomic levels. Microbes participate in the pathogenesis of multiple metabolic diseases including diabetes.
View Article and Find Full Text PDFPregnancy is a complicated and long procedure during one or more offspring development inside a woman. A short period of oxygen shortage after birth is quite normal for most babies and does not threaten their health. However, if babies have to suffer from a long period of oxygen shortage, then this condition is an indication of pathological fetal intolerance, which probably causes their death.
View Article and Find Full Text PDFDiabetic retinopathy (DR) has become a major worldwide health problem due to the increase in blindness among diabetics at early ages. The detection of DR pathologies such as microaneurysms, hemorrhages and exudates through advanced computational techniques is of utmost importance in patient health care. New computer vision techniques are needed to improve upon traditional screening of color fundus images.
View Article and Find Full Text PDF