Tribo-films form on surfaces as a result of friction and wear. The wear rate is dependent on the frictional processes, which develop within these tribo-films. Physical-chemical processes with negative entropy production enhance reduction in the wear rate.
View Article and Find Full Text PDFThis study deals with the laser stereolithography manufacturing feasibility of copper-nickel nanowire-loaded photosensitive resins. The addition of nanowires resulted in a novel resin suitable for additive manufacturing technologies based on layer-by-layer photopolymerization. The pure and nanowire-loaded resin samples were 3D printed in a similar way.
View Article and Find Full Text PDFPolymers such as polycaprolactone (PCL) possess biodegradability, biocompatibility and affinity with other organic media that makes them suitable for biomedical applications. In this work, a novel biocomposite coating was synthesised by mixing PCL with layers of calcium phosphate (hydroxyapatite, brushite and monetite) from a biomineral called otolith extracted from Teleost fish (Plagioscion Squamosissimus) and multiwalled carbon nanotubes in different concentrations (0.5, 1.
View Article and Find Full Text PDFUse of an alpha-beta (multiphase HCP-BCC) titanium alloy, Ti6Al4V, is ubiquitous in a wide range of engineering applications. The previous decade of finite element analysis research on various titanium alloys for numerous biomedical applications especially in the field of orthopedics has led to the development of more than half a dozen material constitutive models, with no comparison available between them. Part of this problem stems from the complexity of developing a vectorised user-defined material subroutine (VUMAT) and the different conditions (strain rate, temperature and composition of material) in which these models are experimentally informed.
View Article and Find Full Text PDFThis study presents the additive manufacture of objects using mass-functionalized photo-resins, which are additively photopolymerized using the laser stereolithography technique. The mass functionalization is based on the incorporation of copper nanowires used as fillers at different concentrations. Cylindrical and tensile test probes are designed and manufactured in a layer-by-layer approach using a low-cost laser stereolithography system working with a layer thickness of 100 µ m .
View Article and Find Full Text PDFNanoscale Res Lett
October 2017
Copper nanowires have the potential to reach and even exceed the indium tin oxide performances as flexible transparent conductive electrodes. However, for a large-scale production, they need to be fabricated in a high-speed, low-cost way, without degrading the flexible substrate. One of the major bottlenecks resides in the post-treatment used to remove organic residues from the surface of the nanowires after forming the transparent electrode, which is necessary to obtain high optoelectronic performances.
View Article and Find Full Text PDFThe effect of silver on the phase transition and microstructure of titanium oxide films grown by pulsed cathodic arc had been investigated by XRD, SEM and Raman spectroscopy. Following successive thermal annealing up to 1000 °C, microstructural analysis of annealed Ag-TiO2 films reveals that the incorporation of Ag nanoparticles strongly affects the transition temperature from the initial metastable amorphous phase to anatase and stable rutile phase. An increase of silver content into TiO2 matrix inhibits the amorphous to anatase phase transition, raising its temperature boundary and, simultaneously reduces the transition temperature to promote rutile structure at lower value of 600 °C.
View Article and Find Full Text PDFAdaptive TiAlCrSiYN-based coatings show promise under the extreme tribological conditions of dry ultra-high-speed (500-700 m min-1) machining of hardened tool steels. During high speed machining, protective sapphire and mullite-like tribo-films form on the surface of TiAlCrSiYN-based coatings resulting in beneficial heat-redistribution in the cutting zone. XRD and HRTEM data show that the tribo-films act as a thermal barrier creating a strong thermal gradient.
View Article and Find Full Text PDFAdaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment.
View Article and Find Full Text PDF